
Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 1

Language change summary from version 3.x to 4.0
For full details on any of the changes, see the appropriate reference page.

• BITMAPS header statement is now BITMAP; only one bitmap is required.

• VERSION 3.2 header statement is now VERSION 4.0.

• A new header statement, LANGUAGE, is required; see language codes on page 2 for details.

• Other optional new header statements are: LAYOUT, COPYRIGHT and MESSAGE.

• The plus (+) character is now required in any key-based rules (context + key > output).

Language Reference
This language reference describes the keyboard programming language of Tavultesoft Keyboard
Manager.

You can check for the latest version of this document at http://www.tavultesoft.com/keyman/docs/.

The layout of a keyboard file is organized in two distinct parts: the header, and the body of the code.

Header
The header consists of statements that provide information about the keyboard: the name, version of
Keyman it was created for, hotkeys, and title bar icons. The header must come at the start of the file.
The statements should be entered uppercase so as to distinguish them from statements in the main body
of the code; however, Keyman will recognize them anyway.

Body
The body of the keyboard can contain stores and groups of rules.

Stores are used to keep a table of keys which can be referenced to a second table of output characters.
Rules are the heart of a keyboard file. They describe the action Keyman should take when processing a
key combination. They can be dependent on the context of characters before them and produce any
characters that you wish.

Rules are placed in groups. Each group can contain one or more rules; a group is similar in many ways
to a subroutine or procedure in Visual Basic. Most keyboards will not need multiple groups. See the
use statement for more information about groups.

Stores are described in more detail i n the store statement reference.

Each rule consists of three parts: the context, keystroke, and output. Either the context or the keystroke
are optional in some situations. The context is what is compared to characters already on the screen.
The keystroke is compared to the key you type, and the output is what will replace and supplement the
context on the screen.

Keyman has a buffer for the screen characters of 64 bytes. The length of the context and the output is
by default 16 bytes for each. These limi ts can be set in the [Advanced] section of KEYMAN.INI. See
the Keyman User’s Manual for more information on KEYMAN.INI.

Rules can have an optional context. The base context is the characters that were output to the screen
after Keyman translated them. The base context is usually 64 characters long and the rule context is
usually 16 characters long, although both are modifiable. You can compare the rule context to the base
context; if it matches (and the key too), that rule will be used in the output of the new string. The
context, output and keystroke are specified in ExtendedString format.

The three parts of a rule (context, key, and output) are put together in a style similar to SIL CC:

Context + Key > Output

The ' +' is an optional character; it is just supplied to make it easier to see the break between context and
key. Note: The plus character ('+') may be required in later versions of Keyman. The simplest
type of rule is simply one-to-one key mapping. The most complex can have a table of keys which can
be referenced in many different ways to match the context.

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 2

Variable Types
The different types of variables/constants and the prefixes usually used when describing them are:

TextString (ts...) A string of text enclosed by double quotes

StoreName (sn...) The name of a store in that file (no quotes)

Number (n) A number such as an offset

ExtendedString (xs) A string that can have "" , '', d..., x...,

Identifier (i) A string not enclosed by quotes; file names.

ExtendedString/Char format
The ExtendedString and ExtendedChar formats are strings/characters that can be written as a quoted
string and/or decimal/hexadecimal/octal codes. An extended string can be made up of any amount of
these different codes. There are five ways of representing any character in the string; these are shown
in the table below:

Code Description Example
'A' In single quotes (you can represent a double quote character

(") inside single quotes)
+ 'C' > 'X'

"A" In double quotes (you can represent a single quote character
(') inside double quotes)

+ "'" > '"'

d65 As a decimal (useful for upper-ascii numbers and codes like
optional hyphen (d31).

+ d66 > d74

x41 As a hexadecimal (base 16) code (mostly useful for people
used to programming with hexadecimal numbers)

+ x50 > x88

101 As an octal (base 8) code (to provide compatibili ty with
SIL-CC)

+ 124 > 204

The extended string format can also include statements such as any and index that will be converted
and/or expanded to the correct sequences in memory when the keyboard is loaded.

Comments
A comment can be inserted in a line by preceding it with a 'c' identifier. The identifier must be
preceded and followed with a space character. The comment continues until the end of the line.

Language Codes
Windows 95 and NT have a standard definition for languages that Keyman 4 integrates with. Each
language is given a code (shown in the table below), and dialects of this language are given sub-codes.
The standard defined languages are shown below; for other, undefined languages, either use a new sub-
langauge code in an existing, related language, or use the user-defined language codes x200 to x3ff and
sub-language codes x20 through x3f.

User-defined language codes

If you decide to use a user-defined code, you can request a unique code for your language at
http://www.tavultesoft.com/keyman/langcode/. Tavultesoft will then keep track of the languages by
assigning codes to ensure that Keyman keyboards will not conflict with each other. If you do not plan
to use the keyboard in conjunction with any others, or to distribute it to other people, it is safe to use
any language code you wish.

Language and sub-language codes

x36 Afrikaans x01 South Africa

x1c Albanian x01 Albania

x01 Arabic x01 Saudi Arabia

 x02 Iraq
 x03 Egypt
 x04 Libya
 x05 Algeria

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 3

 x06 Morocco
 x07 Tunisia
 x08 Oman
 x09 Yemen
 x0a Syria
 x0b Jordan
 x0c Lebanon
 x0d Kuwait
 x0e United Arab Emirates
 x0f Bahrain
 x10 Qatar

x2d Basque x01 Spain

x23 Belarussian x01 Belarus

x02 Bulgarian x01 Bulgaria

x03 Catalan x01 Spain

x04 Chinese x01 Taiwan
 x02 PRC
 x03 Hong Kong
 x04 Singapore
 x05* Macao

x1a Croatian x01 Croatia
 x02 Serbia (Latin)
 x03 Serbia (Cyrillic)

x05 Czech x01 Czech Republic

x06 Danish x01 Denmark

x13 Dutch x01 Netherlands
 x02 Belgium

x09 English x01 United States
 x02 United Kingdom
 x03 Australia
 x04 Canada
 x05 New Zealand
 x06 Ireland
 x07 South Africa
 x08 Jamaica
 x09 Caribbean
 x0a Belize
 x0b Trinidad
 x0c* Zimbabwe
 x0d* Philippines

x25 Estonian x01 Estonia

x38 Faeroese x01 Faeroe Islands

x29 Farsi x01 Iran

x0b Finnish x01 Finland

x0c French x01 France
 x02 Belgium
 x03 Canada
 x04 Switzerland
 x05 Luxembourg
 x06* Monaco

x3c Gaelic x01* Scots

 x02* Irish

x07 German x01 Germany
 x02 Switzerland
 x03 Austria
 x04 Luxembourg
 x05 Liechtenstein

x08 Greek x01 Greece

x0d Hebrew x01 Israel

x39 Hindi x01* Hindi

x0e Hungarian x01 Hungary

x0f Icelandic x01 Iceland

x21 Indonesian x01 Indonesia

x10 Italian x01 Italy
 x02 Switzerland

x11 Japanese x01 Japan

x2c Kampuchean x01 Cambodia

x12 Korean x01 (Extended Wansung) -
Korea

 x02 (Johab) - Korea

x2b Laotian x01 Laos

x26 Latvian x01 Latvia

x27 Lithuanian x01 Lithuania

x2f Macedonian x01* Macedonian

x3e Malay x01* Malaysian
 x02* Brunei

x3a Maltese x01* Maltese

x28 Maori x01 New Zealand

x14 Norwegian x01 Norway (Bokmal)

 x02 Norway (Nynorsk)

x15 Polish x01 Poland

x16 Portuguese x01 Brazil
 x02 Portugal

x17* Rhaeto-
Romanic

x01* Rhaeto-Romanic

x18 Romanian x01 Romania
 x02* Moldavia

x19 Russian x01 Russia
 x02* Moldavia

x3b Saami x01* Saami (Lappish)

x1b Slovak x01 Slovakia

x24 Slovene x01 Slovenia

x2e Sorbian x01* Sorbian

x0a Spanish x01 Spain (Traditional
Sort)

 x02 Mexico

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 4

 x03 Spain (Modern Sort)
 x04 Guatemala
 x05 Costa Rica
 x06 Panama
 x07 Dominican Republic
 x08 Venezuela
 x09 Colombia
 x0a Peru
 x0a Argentina
 x0c Ecuador
 x0d Chile
 x0e Uruguay
 x0f Paraguay
 x10 Bolivia
 x11 El Salvador
 x12 Honduras
 x13 Nicaragua
 x14 Puerto Rico

x30 Sutu x01* Sutu

x41 Swahili x01* Kenya

x1d Swedish x01 Sweden
 x02 Finland

x1e Thai x01 Thailand

x31 Tsonga x01* Tsonga

x32 Tswana x01* Tswana

x1f Turkish x01 Turkey

x22 Ukrainian x01 Ukraine

x20 Urdu x01* Urdu

x33 Venda x01* Venda

x2a Vietnamese x01 Vietnam

x34 Xhosa x01* Xhosa

x3d Yiddish x01* Yiddish

x35 Zulu x01* Zulu

Examples:

LANGUAGE x2b, x01 c Laotian standard
LANGUAGE x0d, x04 c Hebrew standard
LANGUAGE x200, x20 c User-defined language

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 5

Header Statement Reference

begin
begin > use(gnGroup)

The begin statement tells Keyman which group should be processed first when it receives a
keystroke. This line originated in SIL-CC, and a simpli fied version was used in Keyman for
consistency.

Example: begin > use(main)

BITMAP
BITMAP bmpFile

This statement replaces the BITMAPS statement from Keyman 3.x. Keyman 4 only requires one
bitmap, to indicate that the keyboard is active. The bitmap is displayed at the bottom right of the
screen, in the tool tray. This is a required statement.

COPYRIGHT
COPYRIGHT tsCopyrightMessage

Keyman 4 keyboards have a provision to display a copyright message when they are installed. This
statement is optional.

HOTKEY header statement
HOTKEY tsHotKey

The HOTKEY statement specifies the hotkey that Keyman will use to turn the keyboard on. When this
hotkey is pressed, any active keyboard will be turned off and the new keyboard will be turned on.

The hotkey can be any letter key, with any of the Shift,Control and/or Alt keys also held down. The
specification of the HOTKEY statement follows the Microsoft standard for hotkeys in Windows.
Inside a double-quoted string, you can combine the letter key with special characters to identify the
shift state:

To Combine With Precede the letter-key by:
Shift + (plus sign)
Ctrl ^ (caret sign)
Alt % (percent sign)

Starting with version 3.1, the hotkey can also be in Virtual Key format, so that you can use any key on
the keyboard.

HOTKEY "^+A" c Ctrl+Shift+A
HOTKEY [Alt Shift K_PAUSE] c Alt+Shift+Pause

LANGUAGE
LANGUAGE nLang, nSubLang

The LANGUAGE statement tells Keyman which language to associate the keyboard file with. See the
Language Codes section for details on what the nLang and nSubLang parameters mean, and how to
use them. The LANGUAGE statement is required.

LAYOUT
LAYOUT nID

The LAYOUT statement must be used when you are redefining a standard Windows keyboard layout.
For instance, if you wanted to create an alternative English layout, you'd use LAYOUT x5. The
majority of languages should be able to use layout x1, but if in doubt, just use a higher number.

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 6

English has four alternatives already, so you'll need start at x5; Portuguese, Italian, and German all has
a single alternative layout, so for them start at x2.

MESSAGE
MESSAGE tsMessage

This is a generic message, such as a shareware notice that you can display when the keyboard is
installed. This statement is optional.

Example: MESSAGE "This keyboard is freely redistributable."

NAME
NAME tsKeyboardName

The NAME statement lets you give a more descriptive name to your keyboard than just the file name.
If NAME isn't specified in the keyboard file, Keyman will use the filename of the keyboard, excluding
the extension, so the NAME statement is optional.

VERSION
VERSION nKeyboardVersion

The VERSION statement was added to Keyman 3.0 to allow later versions to easily distinguish what
version of Keyman the keyboard was written for and handle it as such. The VERSION statement is
required.

You must specify version 4.0 for Keyman 4.0 keyboards.

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 7

Body Statement Reference

any statement
any(snStore)

The any statement will , in effect, return true if the character input is in the store snStore. The character
input is implied. This statement is only valid on the left side of a rule; the index statement is used to
output the results of an any in the output. If an any is used in the key, it will be expanded out to
include one rule for each character in the store. The any statement remembers the offset in the store
where the match for later use with the index statement.

snStore: The name of the store to check in

+ any(keys) > index(output,1)

beep statement
beep

The beep statement produces a beep at the system speaker when the rule is matched. If you have a
sound driver installed, beep will produce the sound specified by “Asterisk” in the Sounds option in
Control Panel. When using the beep statement, remember that it can delete all that was matched on
the left side of the rule if you don't precede it with context or appropriate characters. The beep
statement is only valid in the output. The example given below will , if it receives a key that is in the
key group, and the context ends with a cons character, ignore the key and leave the context alone.

no parameters

any(cons) + any(key) > context beep

context statement
context

The context statement simply reproduces the context stored from the rule match into the output. Use
the context statement as much as possible as it is significantly faster than using the index statement.

no parameters

any(cons) "W" + any(key) > context index(keyout,3)

deadkey statement
deadkey(nKey)

The deadkey statement lets you program a deadkey in your keyboard. The deadkey will be the same as
a normal character, but it won't come up on the screen. You can have up to 254 deadkeys, from 1 to
255.

nKey: A number from 1 to 255 that identifies the deadkey

+ '`' > deadkey(1)
deadkey(1) + 'e' > 'è'

group statement
group(gnGroup) [using keys]

group tells Keyman that a new group has started. There are two sorts of groups: key processing
groups, and context processing groups. Key processing groups can include context checking, but
context processing groups cannot include key checking. Keyman will use first the group specified in
the begin statement, and move from there onto other groups. The keystroke received by Keyman is the
same for all groups with key processing.

To tell Keyman that the group should include key processing, you should include the using keys
section of the statement; it that is left out, Keyman assumes the group checks the context only. The
keystroke will remain the same during processing; you can have many groups that each use using keys,
and the keystroke will be the same for all of them. If you leave out the using keys bit, you have to also

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 8

leave out the '+' and the keystroke, because if you leave them in, the keystroke will be regarded as part
of the context.

gnGroup: The name of the new group.

group(main) using keys
group(syllablecheck)

index statement
index(snStore,nOffset)

The index statement gets the offset of the character from the left side of the rule at offset nOffset. The
offset refers to the position, including other characters, to the any statement which has saved the offset
which it found the character in. The index will output the character at that offset from the store
snStore. If used carefully, the index and any combination can be very powerful. The index statement
is only valid in the output.

snStore: The store to output from

nOffset: The offset in the input to retrieve the any information from.

any(cons) "W" + any(key) > index(keyout,3) "w" index(cons,1)

match rule
match > esString

In each group, if Keyman finds a match rule, it will use it when a rule in the group was matched. A
match rule can include use, return, beep and normal characters.

esString: The extended string to output, including the statements mentioned above.

match > use(AdjustVowels)

nomatch rule
nomatch > esString

nomatch is similar to match, but instead of the rule being used when a rule was matched, it will be used
when a rule isn't matched in the group. A nomatch rule can include use, return, beep and normal
characters.

esString: The extended string to output, including the statements mentioned above.

nomatch > beep

nul statement
nul

The nul statement will delete the context and key on the left hand side of the rule from the output; it is
equivalent to having an empty output (which is not allowed). The nul statement probably will not be
used often, because there are not many times you would want to delete the context and keystroke. The
nul command must be the only character or command on the right hand side of the rule

no parameters

any(cons) + any(key) > nul c delete consonant and next key

outs statement
outs(snStore)

The outs statement simply copies the store snStore into the position in which it has been inserted. Most
of the time this is used only in stores but it can be used in the context and output as well.

snStore: The store to expand

store(key) "ABC" outs(DEFstore)

Tavultesoft Keyboard Manager 4.0 Language Reference Revsion 1.0, 16/03/1999

 Page 9

return statement
return will tell Keyman to stop processing rules and wait for the next keystroke to come. Keyman will
not return to process other groups that called the one with the return statement.

no parameters

nomatch > return

store command
store(snStore) xsData

The store statement lets you store a string of characters or keys in a buffer which can then be
referenced with any and index. Proper use of store can reduce many keyboards down to a few rules. A
store is terminated at the end of the line (or continuation lines).

snStore: The name of the store to use

xsData: The data to place into the store snStore

store(keys) "ABCDEFG"

use command
use(gnGroup)

The use statement tells Keyman to switch processing to a new group; after Keyman has gone through
the new group, and any other nested groups, it will return to the previous one. The use statement can
be used with the match and nomatch rules; it will work the same way.

gnGroup: The name of the group to switch control to.

any(Vowel) + any(DiacriticKey) > use(AdjustVowels)

