Language change summary from version 3.x to 4.0
For full details on any of the changes, see the appropriate reference page.

* Bl TMAPS header statement is now Bl TMAP; only one bitmap is required.

* VERSI ON 3. 2 header statement is now VERSI ON 4. 0.

* A new header statement, LANGUAGE, is required; see language codes on page 2 for details.

e Other optional new header statements are: LAYOUT, COPYRI GHT and MESSACE.

e Theplus (+) character is now required in any key-based rules (cont ext + key > out put).

Language Reference

This language reference describes the keyboard programming language of Tavultesoft Keyboard
Manager.

Y ou can check for the latest version of this document at http://www.tavultesoft.com/keyman/docy.

The layout of akeyboard fileis organized in two dstinct parts: the header, and the body of the ade.

Header

The healer consists of statements that provide information abou the keyboard: the name, version d
Keyman it was creaed for, hakeys, andtitle bar icons. The header must come & the start of thefile.
The statements shoud be entered uppercase so asto dstinguish them from statements in the main body
of the mde; however, Keyman will recognizethem anyway.

Body
The body of the keyboard can contain stores and groups of rules.

Sores are used to keep atable of keyswhich can be referenced to a secondtable of output charaders.
Rules are the heat of akeyboard file. They describe the ation Keyman shoud take when processng a
key combination. They can be dependent onthe context of charaders before them and produce ay
charadersthat youwish.

Rules are placed in groups. Each groupcan contain ore or more rules; agroupis smilar in many ways
to asubroutine or procedure in Visual Basic. Most keyboards will not need multiple groups. Seethe
use statement for more information abou groups.

Stores are described in more detail i n the store statement reference

Eadh rule mnsists of threeparts: the context, keystroke, and ouput. Either the context or the keystroke
are optional in some situations. The context iswhat is compared to charaders aready onthe screen.
The keystroke is compared to the key you type, and the output is what will replace ad supdement the
context onthe screen.

Keyman has a buffer for the screen charaders of 64 bytes. The length of the mntext and the output is
by default 16 bytesfor ead. These limits can be set in the [Advanced] sedion & KEYMAN.INI. See
the Keyman User’s Manual for more information onKEYMAN.INI.

Rules can have an optional context. The base cntext isthe charaders that were output to the screen
after Keyman translated them. The base mntext is usually 64 charaders long andthe rule mntext is
usually 16 charaders long, athough bah are modifiable. Youcan compare the rule mntext to the base
context; if it matches (and the key too), that rule will be used in the output of the new string. The
context, ouput and keystroke ae spedfied in ExtendedString format.

The threeparts of arule (context, key, and ouput) are put together in a style similar to SIL CC:
Context + Key > Output

The' +' isan optiona charader; it isjust suppied to make it easier to seethe bre& between context and
key. Note: The plus character ('+') may be required in later versions of Keyman. The simplest

type of ruleis smply one-to-one key mapping. The most complex can have atable of keys which can

be referenced in many diff erent ways to match the context.

Page 1



Variable Types
The diff erent types of variables/constants and the prefixes usually used when describing them are:

TextSring (ts...) A string of text enclosed by doute quates
SoreName (sn..) The name of astorein that file (no qudes)
Number (n) A number such as an doff set

ExtendedString (xs) A string that can have ™, ", d..., X..., ....
Identifier (i) A string nat enclosed by quaes; file names.

ExtendedString/Char format

The ExtendedString and ExtendedChar formats are strings/charaders that can be written as a quaed
string and/or dedmal/hexadedmal/octal codes. An extended string can be made up o any amourt of
these different codes. There ae five ways of representing any charader in the string; these ae shown
in the table below:

Code Description Example

‘Al In single quaes (you can represent adoulde quae charader +'C' >'X’
(") inside single quaes)

"A" In doubbe quaes (you can represent asingle quae charader + " >"
() inside doude quaes)

d65 Asadedama (useful for upper-ascii numbers and codeslike  + d66 > d74
optional hyphen (d31).

x41 As ahexadedmal (base 16) code (mostly useful for people + x50 > x88
used to programming with hexadedmal numbers)

101 Asan octal (base 8) code (to provide compatibili ty with +124 > 204
SIL-CC)

The extended string format can also include statements sich as any and index that will be converted
and/or expanded to the mrred sequences in memory when the keyboard is loaded.

Comments

A comment can beinserted in aline by preceding it with a'c' identifier. Theidentifier must be
precaled and foll owed with aspace tarader. The comment continues urtil the end d the line.

Language Codes

Windows 95 and NT have astandard definition for languages that Keyman 4integrates with. Each
language is given a ade (shown in the table below), and daleds of this language ae given sub-codes.
The standard defined languages are shown below; for other, undefined languages, either use anew sub-
langauge mdein an existing, related language, or use the user-defined language mdes x200to x3ff and
sub-language ades x20 through x3.

User-defined language codes

If you dedde to use auser-defined code, you can request a unique ade for your language &
http://www.tavultesoft.com/keyman/langcode/. Tavultesoft will then keep tradk of the languages by
asdgning codes to ensure that Keyman keyboards will not conflict with ead ather. If you do nd plan
to use the keyboard in conjunction with any others, or to dstribute it to ather people, it is sfeto use
any language cde you wish.

Language and sub-language codes

x36 Afrikaans x01 South Africa x02 Irag

. . x03 Egypt
x1lc Albanian x01 Albania x04 Libya
x01 Arabic x01 Saudi Arabia x05 Algeria

Page 2



x2d
X23
x02
x03
x04

xla

x05
x06
x13

x09

x25
x38
x29
x0b

x0c

x3c

Basque
Belarussian
Bulgarian
Catalan

Chinese

Croatian

Czech
Danish
Dutch

English

Estonian
Faeroese
Farsi
Finnish

French

Gaelic

x06
x07
x08
x09
x0a
x0b
x0c
x0d
Xx0e
xOf

x10

x01
x01
x01
x01

x01
x02
x03
x04
x05*

x01
x02
x03

x01
x01

x01
x02

x01
x02
Xx03
x04
Xx05
X06
x07
x08
x09
x0a
x0b
x0c*
x0d*

x01
x01
x01
x01

x01
x02
x03
x04
x05
x06*

x01*

Morocco
Tunisia
Oman
Yemen
Syria
Jordan
Lebanon
Kuwait
United Arab Emirates
Bahrain
Qatar

Spain
Belarus
Bulgaria
Spain
Taiwan
PRC

Hong Kong

Singapore
Macao

Croatia
Serbia (Latin)
Serbia (Cyrillic)

Czech Republic
Denmark

Netherlands
Belgium

United States
United Kingdom
Australia
Canada

New Zealand
Ireland

South Africa
Jamaica
Caribbean
Belize
Trinidad
Zimbabwe
Philippines

Estonia
Faeroe |slands
Iran

Finland

France
Belgium
Canada
Switzerland
Luxembourg
Monaco

Scots

x07

x08
x0d
x39
x0e
xOf

x21
x10

x11
X2¢
x12

x2b
X26
x27
x2f

x3e

X3a
Xx28
x14

x15
x16

x17*

x18

x19

x3b
x1b
x24
x2e

x0a

Page 3

x02* Irish
German x01 Germany
x02 Switzerland
x03 Austria
x04 Luxembourg
x05 Liechtenstein
Greek x01 Greece
Hebrew x01 lsrael
Hindi x01* Hindi
Hungarian x01 Hungary
Icelandic x01 Iceland
Indonesian X01 Indonesia
Italian x01 Itay
x02 Switzerland
Japanese x01 Japan
Kampucheanx01 Cambodia
Korean x01 (Extended Wansung) -
Korea
x02 (Johab) - Korea
Laotian x01 Laos
Latvian x01 Latvia
Lithuanian x01 Lithuania
M acedonian x01* Macedonian
Malay x01* Malaysian
x02* Brunei
Maltese x01* Madtese
Maori x01 New Zealand
Norwegian x01 Norway (Bokmal)
x02 Norway (Nynorsk)
Polish x01 Poland
Portuguese x01 Brazil
x02 Portugal
Rhaeto- x01* Rhaeto-Romanic
Romanic
Romanian x01 Romania
x02* Moldavia
Russian x01 Russia
x02* Moldavia
Saami X01* Saami (Lappish)
Slovak x01 Sovakia
Slovene x01 Sovenia
Sorbian x01* Sorbian
Spanish x01 Spain (Traditiona
Sort)
x02 Mexico



x03
x04
x05
x06
x07
x08
x09
x0a
x0a
x0c
x0d
Xx0e
xOf

x10
x11
x12
x13
x14

x30 Sutu x01*
x41 Swahili x01*
Examples:

LANGUAGE x2b, x01
LANGUAGE x0d, x04
LANGUAGE x200, x2

Spain (Modern Sort)
Guatemala
CostaRica

Panama

Dominican Republic
Venezuela
Colombia

Peru

Argentina

Ecuador

Chile

Uruguay

Paraguay

Bolivia

El Salvador
Honduras
Nicaragua

Puerto Rico

Sutu

Kenya

x1d

xle
x31
x32
x1f

x22
x20
X33
x2a
x34
x3d
X35

Swedish

Thai
Tsonga
Tswana
Turkish
Ukrainian
Urdu
Venda
Vietnamese
Xhosa
Yiddish
Zulu

¢ Laotian standard
¢ Hebrew standard
0 ¢ User-defined | anguage

Page 4

x01 Sweden
x02 Finland

X01 Thailand
x01* Tsonga
X01* Tswana
X01 Turkey
X01 Ukraine
x01* Urdu
x01* Venda
x01 Vietnam
x01* Xhosa
x01* Yiddish
X01* Zulu



Header Statement Reference

begin
begi n > use(gnG oup)

Thebegi n statement tells Keyman which group shoud be processed first when it receéves a
keystroke. Thisline originated in SIL-CC, and a simplified version was used in Keyman for
consistency.

Example: begin > use(main)

BITMAP
BI TMAP bnpFi | e

This gatement replaces the Bl TMAPS statement from Keyman 3.x. Keyman 4 oty requires one
bitmap, to indicate that the keyboard is adive. The bitmap is displayed at the bottom right of the
screen, in thetool tray. Thisisarequired statement.

COPYRIGHT
COPYRI GHT t sCopyri ght Message

Keyman 4keyboards have aprovisionto dsplay a mpyright message when they areinstalled. This
statement is optional.

HOTKEY header statement
HOTKEY t sHot Key

The HOTKEY statement spedfies the hotkey that Keyman will use to turn the keyboard on. When this
hotkey is pressed, any adive keyboard will be turned off and the new keyboard will be turned on.

The hotkey can be ay letter key, with any of the Shift,Control and/or Alt keys also held down. The
spedficaion o the HOTKEY statement foll ows the Microsoft standard for hotkeys in Windows.
Inside adoulde-quated string, you can combine the letter key with spedal charadersto identify the
shift state:

To Combine With Precede the letter-key by:
Shift + (plus sgn)

Ctrl A (caret sign)

Alt % (percent sign)

Starting with version 3.1,the hatkey can also bein Virtual Key format, so that you can use ay key on
the keyboard.

HOTKEY "/ +A" c Ctrl+Shift+A
HOTKEY [Al't Shift K_PAUSE] ¢ Alt+Shift+Pause
LANGUAGE

LANGUAGE nLang, nSublLang

The LANGUAGE statement tell s Keyman which language to associate the keyboard file with. Seethe
L anguage Codes sedionfor detailsonwhat thenLang andnSubLang parameters mean, and how to
use them. The LANGUAGE statement isrequired.

LAYOUT
LAYOQUT nl D

The LAYOUT statement must be used when you are redefining a standard Windows keyboard layoui.
For instance, if youwanted to creae an aternative English layout, youd use LAYOUT x5. The
majority of languages shoud be aleto uselayout x1, bu if in doul, just use ahigher number.

Page 5



English has four aternatives already, so youll need start at x5; Portuguese, Italian, and German al has
asingle dternative layout, so for them start at x2.

MESSAGE
MESSACE t sMessage

Thisis ageneric message, such as a shareware naticethat you can display when the keyboard is
installed. This gatement isoptional.

Example: MESSACGE "This keyboard is freely redistributable.”

NAME
NAME t sKeyboar dNane

The NAME statement lets you give amore descriptive name to your keyboard than just the file name.
If NAME isn't spedfied in the keyboard fil e, Keyman will use the filename of the keyboard, excluding
the extension, so the NAME statement is optional.

VERSION

VERSI ON nKeyboar dVer si on

The VERSI ON statement was added to Keyman 3.0to alow later versionsto easily distinguish what
version d Keyman the keyboard was written for and handle it as such. The VERSI ON statement is
required.

You must spedfy version4. 0 for Keyman 4.0keyboards.

Page 6



Body Statement Reference

any statement
any( snSt ore)

The any statement will , in effed, return true if the charader inpu isin the store snSore. The darader
inpu isimplied. This datement is only valid onthe left side of arule; the index statement is used to
output the results of an any in the output. If an any isused in the key, it will be expanded ou to
include one rule for ead charader in the store. The ay statement remembers the off set in the store
where the match for later use with the index statement.

snSore; The name of the store to ched in

+ any(keys) > index(output,1)

beep statement
beep

The beep statement produces abeep at the system spesker when the rule is matched. If you have a
sound diver installed, beg will producethe soundspedfied by “Asterisk” in the Sounds optionin
Control Panel. When using the beep statement, remember that it can delete all that was matched on
the left side of the rule if you dorit precale it with context or appropriate dharacters. The beep
statement is only valid in the output. The example given below will, if it recaves akey that isin the
keygroup,andthe context ends with a cons charader, ignore the keyand leave the ntext alone.

no parameters
any(cons) + any(key) > context beep

context statement
context

The mntext statement simply reproduces the context stored from the rule match into the output. Use
the mntext statement as much as possble asit is sgnificantly faster than using the index statement.

no parameters
any(cons) "W" + any(key) > context index(keyout,3)

deadkey statement
deadkey( nKey)

The deadkey statement lets you program a deadkey in your keyboard. The dealkey will be the same &
anormal charader, but it won't come up onthe screen. You can have upto 254 calkeys, from 1 to
255.

nKey. A number from 1 to 255that identifies the deadkey

+ "' > deadkey(1)
deadkey(1) + 'e' > 'é'

group statement
group( gnGr oup) [using keys]

grouptells Keyman that a new group tes darted. There ae two sorts of groups: key processng
groups, and context processng goups. Key processng goups can include mntext cheding, but
context processng groups cannd include key chedking. Keyman will use first the groupspedfied in
the begin statement, and move from there onto ather groups. The keystroke recaved by Keyman isthe
same for al groups with key processng.

To tell Keyman that the groupshoud include key processng, you shoud include the using keys
sedion d the statement; it that is left out, Keyman assumes the group chedks the context only. The
keystroke will remain the same during processng; you can have many groups that ead use using keys,
and the keystroke will be the samefor all of them. If youleare out the using keys bit, you haveto also

Page 7



leave out the '+' and the keystroke, because if you leave them in, the keystroke will be regarded as part
of the mntext.

gnGroup: The name of the new group.

group(mai n) using keys
group( syl I abl echeck)

index statement
i ndex(snStore, nO fset)

Theindex statement gets the off set of the charader from the left side of therule & off set nOffset. The
off set refersto the pasition, including other charaders, to the any statement which has saved the off set
which it foundthe charader in. The index will output the charader at that off set from the store
snSore. If used carefully, the index and any combination can be very powerful. The index statement
isonly valid in the output.

snSore: The storeto ouput from
nOffset: The off set in the input to retrieve the any information from.
any(cons) "W + any(key) > index(keyout,3) "w' index(cons, 1)

match rule
match > esString

In ead group,if Keyman finds a match rule, it will use it when arule in the groupwas matched. A
match rule can include use, return, begp and namal charaders.

esring: The extended string to ouput, including the statements mentioned above.

mat ch > use( Adj ust Vowel s)

nomatch rule
nomat ch > esString

nomatch is smilar to match, bu instead of the rule being used when a rule was matched, it will be used
when arule isn't matched in the group. A nomatch rule can include use, return, begp and naomal
charaders.

essring: The extended string to ouput, including the statements mentioned above.

nomat ch > beep

nul statement
nul

The nul statement will delete the antext and key onthe left hand side of the rule from the output; it is
equivalent to having an empty output (which is nat allowed). The nul statement probably will not be
used often, because there ae not many times you would want to delete the mntext and keystroke. The
nul command must be the only charader or command onthe right hand side of the rule

no parameters
any(cons) + any(key) > nul c del ete consonant and next key

outs statement
out s(snStore)

The outs datement simply copies the store snSoreinto the positionin which it has been inserted. Most
of thetimethisisused orly in stores but it can be used in the cntext and ouput as well.

snSore: The storeto expand
store(key) "ABC' outs(DEFstore)

Page 8



return statement

return will tell Keyman to stop processing rules and wait for the next keystroke to come. Keyman will
not return to process other groups that called the one with the return statement.

no parameters
nomatch > return

store command
store(snStore) xsData

The store statement lets you store a string of characters or keys in a buffer which can then be
referenced with any and index. Proper use of store can reduce many keyboards down to afew rules. A
storeisterminated at the end of the line (or continuation lines).

snSore: The name of the store to use
xsData: The datato place into the store snSore
st ore(keys) " ABCDEFG'

use command
use(gnG oup)

The use statement tells Keyman to switch processing to a new group; after Keyman has gone through
the new group, and any other nested groups, it will return to the previous one. The use statement can
be used with the match and nomatch rules; it will work the same way.

gnGroup: The name of the group to switch control to.

any(Vowel ) + any(DiacriticKey) > use(AdjustVowels)

Page 9



