Tavultesoft Keyboard Manager

Developer Documentation

VERSION 5.0

Tavultesoft

Last update: 07/08/00 9:05 PM

This documentation may be freely copied, but the copyright notice must not be altered or removed. No part of this
documentation may be modified or edited. Tavultesoft holds no responsibility for any errors in this documentation or the
use of its software.

© 2000 Marc Durdin / Tavultesoft. All rights reserved.

Later versions of this file may be available online at http://www.tavultesoft.com/keyman/docs/.

Microsoft, Word for Windows, Access, and Excel are registered trademarks, and Windows is a trademark of Microsoft
Corporation.

Ami Pro is a registered trademark of Lotus Corp.
Compaq is a registered trademark of Compag Computer Corporation.

Any other trademarks referred to remain the property of their respective holders.

Tavultesoft Keyboard Manager 5.0 Developer Documentation

Chapter 1 INFOQUCTION.eiiiieiite e bbbttt b et sb et sbe e 4
Documentation included in this diStriDULIONcoviiiiiii s 4
Chapter 2 Writing a Simple Keyboard Program..........cccociciereineiesesseseese e 5
OVEIVIBW..... ettt bbb bbb bbb h bbb bbb bbbttt b et et nn et 5
Arranging the Layout on the KeYDOAIdcoeiiiieiiiiie e e e 5
Writing the KeybDOard PrOgram........cc.ooiiiiiiiieiiee ettt b bbbt n e e 6
Comments and BIANK LINEScovciiiiiiieieie et e 6

THE HEAB ...ttt b et b et b e bt b e nr et b e nr et er e r e r e ere 7

TRE RUIES ...ttt 8
Chapter 3 FUther Programming ...ttt st s 14
UNICOOE ...ttt et R e r et R et r e r et 14

Y O]] o] [T 0T oSS 14
THE USE STALEMENT......veeieciieiree et 14

THE FETUMN STALEMENT.......eiiiiieci et 15

The match and NOMALICN RUIESoiiiiiiiiiie e et 15
SUMMING UP oottt bbbt bt s e b e e bt e b e e b e et e b sb e b e sbeebeebeenteneennenas 15
CONSEIAINTS ...tttk b et b e bt bt et h e bt e bt e bt e bbbt e bt ekt eb et et e eb b bt abenn e b e anenrene s 15
Groups Without the “Using Keys” KEYWOIT.couiiiiiieiiiiie et 16
VITTUBL KBYS ...ttt e b bbbt R et e b e b bt e bt e bt e bt e Rt e e et e ebe et e e neeneenne e 16
OBNEE FRAIUIES ... ettt b bt b et b bbb bbbt b bt bbb 18
Other Header STAtEIMENTScorvireiiiriirreees e 18

NUE TN ENE CONEEXL. ..ot 18

THE QUES STALEIMENT. ...ttt 18

[o = LU SRS 18
Chapter 4 Distributing Your KeYDOAIAS.cccviiiiriiiirieiiese s 19
KEYMAN FIIE TYPES ...ttt bbbttt eb e s bt bbbt et e n e b e b e nbesaeene e e e b e 19
Creating @ Keyboard PACKAGEccuiiiiiiiieie ettt bbb e 19
Creating a Redistributable INSTAIIEN ..o e 21
TEChNICAI DELAIISecveieeeeice bbbt 21

Page 3

Tavultesoft Keyboard Manager 5.0 Developer Documentation

CHAPTER 1

Introduction

Welcome to the Tavultesoft Keyboard Manager. With the Tavultesoft Keyboard Manager (Keyman), it
becomes practical to enter and edit documents that use languages and scripts other than English, for a
wide variety of Windows application programs such as word processors, spreadsheets, databases, and
desktop publishers.

Keyman has been developed with particular reference to the languages of South-East Asia and their
scripts, but it can be readily adapted for many other languages. Keyman will allow you to mix many
languages in one document, in your favorite word processor.

The most important feature of Keyman is the keyboard definition language that lets you develop your
own keyboard layouts for just about any language.

This manual will guide you through the basics writing keyboards for Keyman, and explain the more
advanced options that Keyman gives you. Reference information is given in the Reference
Documentation.

Documentation included in this distribution
The following documents should be included with your Keyman distribution:

» User documentation (Keyman50.pdf): Includes information on usage of Keyman 5.0. Does not
include programming or development environment details. You should read this if you want to
use Keyman, and it provides an overview of the functionality that developers will also find useful.
This file will be included in redistributable versions of Keyman.

» Developer documentation (kmdev50.pdf): This document. Keyboard developers should use this
document to understand how to write keyboards and packages, and make the best use of the
Keyman development tools. Also includes a tutorial on writing a simple keyboard.

» Keyboard definition language reference (Km50lang.pdf): This file includes the details of the
Keyman programming language (.kmn files), in a reference format.

» Language code sheet (Langcode.pdf): A list of the MS-defined language codes. Developers
should always check the Tavultesoft website for information on more recent updates to this
document.

» Keyboard template sheet (Keys.rtf): A useful template for documenting keyboard layouts.

» Version information sheet (Version.txt): Contains information on changes, bug fixes and
current version.

* License information (License.txt): Contains details on the legal requirements for using Keyman,
and licensing details.

Other documentation may become available and can be downloaded from
http://www.tavultesoft.com/keyman/docs/.

Page 4

Tavultesoft Keyboard Manager 5.0 Developer Documentation

CHAPTER 2

Writing a Simple Keyboard Program

There are two main steps to writing a keyboard program. The first step is to arrange the layout of the
characters on the keyboard. Then, you enter the keyboard program according to your layout.

This chapter shows you the basic steps in writing a keyboard program; we will be using a simplified
French keyboard as an example to follow through.

It is important to remember that a Keyman keyboard has a source file and a compiled file. The source
file has the extension .kmn. The compiled file has the extension .kmx. You cannot installed a source
file into Keyman 4.0, and you cannot edit a compiled file. See the section Compiling Keyboards for
information on how to convert a source file into a compiled file.

Important Even if you have some experience in writing CC tables, you should still read this chapter,
as it shows you the basic steps and structure of a keyboard file, which is slightly different to CC tables.
However, your experience should help you learn the format more quickly.

Overview

You will be designing a simplified French keyboard for people who don’t know the standard French
keyboard layout; you will have to go through both steps mentioned above. This French keyboard
(Quick French) doesn’t follow the standard French layout; instead, it uses a basic English keyboard
with some deadkeys to define vowel diacritics and other French characters needed.

You will need to know the character codes in the font that goes with this keyboard (for Quick French,
Times New Roman and Arial work fine); the characters you will be using may be upper-ascii. If you
do not have a font for the language you will be working with, you will need to obtain or create one;
Keyman does not do anything about fonts.

Arranging the Layout on the Keyboard

First of all, you have to know what codes are used for the characters you are mapping with your
keyboard program. (You can use the Character Map application that is provided with Windows to help
you find these codes.)

For the Quick French keyboard, you will need all the vowels with different diacritics, some French
symbols, and c-cedilla (upper and lower case); the codes needed are listed below, along with some
others that are used by other European languages:

Char Code Char Code Char Code Char Code Char Code Char Code

A 192 E 200 [204 o) 210 U 217

a 224 e 232 i 236) 242 U 249

A 193 E 201 i 205 o) 211 U 218 Y 221
& 225 é 233 i 237 6 243 G 250 y 253
A 194 E 202) 206 0 212 0 219 C 199
a 226 é 234 i 238 0 244 0 251 ¢ 254
A 196 E 203 i 207 o) 214 U 220 « 171
i 228 é 235 i 239) 246 i 252 » 187

Now that you know the character codes needed, you must decide how you want to key them. For the
purposes of this example, the codes will be keyed according to the following table:

Page 5

Tavultesoft Keyboard Manager 5.0 Developer Documentation

Code Keys to create code

a A, .. backquote (), followed by the corresponding vowel key

a A, .. quote ("), followed by the corresponding vowel key

aA, .. caret (*, SHIFT+6), followed by the corresponding vowel key

a A, .. double quote ("), followed by the corresponding vowel key

¢, C quote ("), followed by small or capital C.

«,» double less-than symbol (<<) or double more-than symbol (>>)

The basic design of the keyboard is done. There will be more to come, but first you are going to write
the first version of the keyboard program.

Writing the Keyboard Program

Before you start this section, start a text editor (such as Windows Notepad), and begin editing a new
file. The Tavultesoft Integrated Keyboard Editor has been designed for this purpose and works closely
with Keyman (see chapter 6). (DOS text editors are okay, too, but not quite as convenient.)

A keyboard program is divided into two sections: the header, and the rules. The header lets you define
the name of the keyboard, hotkeys, and other general settings. The rules are divided into groups where
you define how the keyboard responds to keystrokes. Every keyboard program must have both of these
sections. A keyboard program normally has the extension .KMN and is an ANSI text file.

Note A keyboard program is in ANSI text format, not ASCII text format, because Windows uses the
ANSI character set. If you are using a DOS text editor, you must remember that the characters you see
on the screen aren’t necessarily the same as the ones you’d see if you used a Windows text editor, such
as Notepad.

Comments and Blank Lines

A Keyboard Program can have a comment at any point. The comment is identified by a letter ‘c’, with
a space on either side (unless the comment is at the start of the line, in which case you only need a
space on the right). The end of the line marks the end of the comment.

Blank lines are ignored by Keyman; you can have them anywhere in a keyboard program.
Examples:

¢ This is a coment
c This is a comment, al so

It is a good idea to use comments to document your keyboard program. They will help you remember
why you did something in a particular way, and they will also help other people understand the
program.

Add some comments to the start of the Quick French keyboard program, in your text editor, describing
who wrote it, when it was written, and anything else needed, such as instructions on how to use the
keyboard (from the tables above). You could even add a copyright notice, for a keyboard that uses
complex algorithms, for example.

Example:
Sinplified French Keyboard Program for Keyman 5.0
Thi s keyboard programuses a sinplified set of keys

for typing French, especially for those who don’t know
the standard French keyboard.

OO0 00

Page 6

Tavultesoft Keyboard Manager 5.0 Developer Documentation

¢ NOTE: This keyboard was created fromthe Keynman keyboard
c programm ng tutorial.
c
¢ Witten by Anybody, August, 2000
c
The Header

The header is easy to create; it consists of statements that help Keyman identify the keyboard and set
default options for it. Each statement in the header must be on a separate line and is usually written
with capital letters, although that is not required. Keeping the statements in the header in upper case
helps you identify them easily, and keeps them consistent with keyboard programs other people might
write.

Five statements are required in the header. Some other optional statements are described in later
chapters. The required statements are: NAVE, Bl TMAP, LANGUAGE, VERSI ON, and begi n. The
begi n statement is usually written in lower case.

The NAME Statement

The NANME statement tells Keyman the long descriptive name of the keyboard, which can be as long as
eighty characters. This name is used in the Keyman menu, and in the Options dialog box. The name
must be enclosed in double quotes (™). Any character except the double quote is legal within the name.

For our Quick French keyboard, we will use the name “Quick French.” Add the NAME statement to the
keyboard program, as follows:

NAME " Qui ck French"
You can give your keyboard program a different name, if you wish.

The BITMAP Statement

The Bl TMAP statement tells Keyman which bitmap file is used for the keyboard icon. The bitmap uses
the standard Windows .BMP format; you can create them using Paintbrush. You should make it 16x16
pixels, as that will be the final display size. The bitmap can be monochrome or color, but the final
.BMP file must be less than 64 kilobytes. The Bl TIMAP statement accepts the name of the bitmap file,
in upper or lower case, with or without the .BMP extension included. The file name is not enclosed in
quotes.

Add the Bl TMAP statement, as follows:

Bl TMAP Fr Key

The VERSION Statement

The VERSI ON statement is the simplest statement; for a keyboard intended for version 5.0 of Keyman,
simply add 5.0 to the end of the line.

The Quick French keyboard is intended to be used in Keyman 4.0. Therefore, add the following line to
your program:

VERSION 5.0

The LANGUAGE and LAYOUT Statements

Conversely, the LANGUAGE statement is the most difficult header statement to understand. For the
purposes of this example, we will just give you the complete statement. You will need a LAYOUT
statement as well, as this is an alternative to the standard French keyboard. These statements are
described fully in the Language Reference.

LANGUAGE x0c, xO01 ¢ French (France)
LAYOUT x01

Page 7

Tavultesoft Keyboard Manager 5.0 Developer Documentation

The begin Statement

The begi n statement tells Keyman which group to start processing with when it receives a keystroke.
Later on you will learn how to use multiple groups to process keystrokes, but at present all you need to
know is to include this line in the header.

For the Quick French keyboard, add the following line to tell Keyman to start in the Mai n group:

begin > use(Min)
Conclusion

Those five statements are the only ones required in the header. You can add comments to the ends of
the statements to help other people understand them.

Your Quick French keyboard should so far look like this:

c

¢ Sinplified French Keyboard Program for Keyman 5.0

c

¢ This keyboard programuses a sinplified set of keys

c for typing French, especially for those who don’t know the
¢ standard French keyboard.

c

¢ NOTE: This keyboard was created fromthe Keynman keyboard
c programm ng tutorial

c

c Witten by Anybody, August, 2000

c

NAME " Qui ck French"
Bl TMAP Fr Key
LANGUAGE x0c, xO01
LAYOQUT x01

VERSI ON 5.0

begin > use(Min)

The Rules
Before we start on the rules, we will define some terms:
Term Definition
rule A rule tells Keyman what output is associated

with a keystroke under certain conditions; it
is divided into three parts: the context, key,
and output

context The context specifies the conditions under
which the rule is acted upon. It is compared
with the most recent characters output.

key The key is the code for a single keystroke
that the rule acts on.

output The output is the part of the rule that defines
what characters are to be put on the screen
when the rule’s conditions are met.

The Groups

The first thing to do is to define the group. There are two types of groups: one that processes the key
pressed and the context and another that does further processing using only the context. For most
purposes, the first type of group will do all you need. The group of rules ends at the next gr oup
statement or at the end of the file if there are no more gr oup statements. We said in the section about
the header that the group to be processed first would be identified by the begi n statement.

Page 8

Tavultesoft Keyboard Manager 5.0 Developer Documentation

The begi n statment defined the first group as Mai n. In your program, add a new line:

group(Mai n) using keys

usi ng keys tells Keyman that the group processes keystrokes as well as context. If you leave this
out, the keystrokes will be ignored.

Simple Rules

The simplest rule you can have tells Keyman to convert one key into another. A rule of this sort is
represented in Keyman in the following way:

+ key > out put

where key is the key to be translated, and out put is the character to be output. The plus sign (+), is
required, and shows you that the next character in the string is the keystroke. Note: This has changed
from Keyman 3.x, where the plus sign was optional. More complex rules can have characters before
the plus sign (the context). The right angle-bracket (>) tells Keyman which part of the rule is output
and which part is the key and context. Single characters can be represented in several different ways;
the possible methods are listed below:

Representation Example of the character “x”
Inside single quotes X'

Inside double quotes X"

As a decimal number (base-10) d120

As a hexadecimal humber (base-16) X78

As an octal number (base-8) 170

These different ways of representing a single character follow the SIL-CC conventions. The first three
ways are the most often used, and octal representation is rarely used. Multiple characters (a string) can
be represented in quotes simply by having more than one character in the string. You can have any
combination of these representations in a rule, with spaces between them.

For example, to convert the key “a” to the character “z”, you would include the following line in your
keyboard program:

+ e >
Or, to convert “?” to “Hello World!”, you would have this line:

+"?" > "Hello World!"
You can use either single or double quotes.

A use of the decimal representation is, for example, in the British English keyboard, where the hash
sign (#) is converted into a pounds sign (£, decimal code 163):

+ '# > di163

Using the Context in More Complex Rules

Often you will want to know the previous characters that have been typed and translate the keystrokes
accordingly. Keyman remembers the characters that came out on the screen, and not the actual keys
typed. It is important to remember this, because some programs such as SIL’s Keyswap (for DOS)
work with sequences of keys rather than characters. The characters that came out on the screen are
called the context. The context is represented in a rule to the left of the keystroke, before the plus sign.
For example,

PAM 4 gt s én

In this example, if you type a “*” (caret) followed by the letter “e”, it will come out with the European
letter “&”. The caret is the context, the letter “e” is the key, and the letter “&” is the output.

Page 9

Tavultesoft Keyboard Manager 5.0 Developer Documentation

You can add some of the rules to the Quick French keyboard program now. Add the rules for all the
“a”-related characters; you will quickly see how many rules it would require for a complex keyboard.
Another example rule for the Quick French keyboard program is:

|‘|+|a|>|a|

The Any, Index, and Store Statements

Keyman lets you translate a group of characters in one rule. It does this with the any, i ndex, and
st or e statements. A st or e statement creates a set of characters that can be operated on together
under a name. The any statement lets you match a character in a store and the i ndex statement lets
you output a selected character from it.

A st or e statement comes between the begi n statement and the first group. 1t must all be on one
line. (No endst or e statement is required as in SIL-CC; in fact, it is not supported.) The statement
has the following syntax:

store(nane) string

nane is the name to give to the store. A store name can be up to 16 letters long, but it is usually best
to keep it short. The name can be any combination of letters and numbers; spaces and punctuation
characters are illegal. The second part of the statement, st r i ng, is the string to put in the store; it can
use any combination of the character representations talked about in the previous sections. An
example:

store(lwvowel) 'aeiou

In this example, Keyman will create a store called “lwrvowel”, and make the contents of the store equal
to “aeiou”.

To use a store, you must have an any statement on the left hand side of a rule, and, optionally, a
corresponding i ndex statement on the right hand side.

An any statement allows you to designate a set of characters instead of a single character for the key
or, as part of the context. The syntax of the statement is:

any(st orenane)
For example, you could have the following:

store(stops) '!.?

+ any(stops) > ‘GO
This example would convert any of the characters “!”, “.”, and “?” to a “GQO!”. (This example is
actually not very useful.)

But, to make the any statement useful, you really need to have a statement that lets you know the
matched character. The i ndex statement lets you do that.

The i ndex statement lets you output a character in a store that is at the same position as the matched
character from the equivalent any statement’s store. The i ndex statement has the following syntax:
i ndex(st orenane, of fset)

The st or enarre is obvious; however, the of f set part needs some explaining. As Keyman allows
you to have more than one any statement in a single rule, the i ndex statements in that rule need to
know which any statement they are to take their matched character information from. The of f set
parameter tells Keyman the position of the character of the any statement that is to be used, with the
first character of the context having the offset 1. For example,

+ any(lwvowel) > index(uprvowel, 1)

This rule would convert all lower case vowels to upper case. Or,

Page 10

Tavultesoft Keyboard Manager 5.0 Developer Documentation

any(stops) + any(lwvowel) > index(stops,1l) index(uprvowel, 2)
This one capitalizes any lower-case vowel following a full-stop, question, or exclamation mark.

The context Statement

If the context of the rule is not modified in the output, then you can replace the i ndex statements on
the RHS of the rule with a cont ext statement. For example, the previous rule becomes:

any(stops) + any(lwvowel) > context index(uprvowel, 2)

This is faster and, for more complex rules, easier to read. Use the cont ext statement wherever
possible in preference to using i ndex statements.

The Quick French example keyboard can make use of this quite easily; an example will be shown for
“A” and a vowel:

AEl QU

aei ou
OAl

store(vowel) i
aei

store(caret)

OA
60AET QU

"~ + any(vowel) > index(caret, 2)
You should be able to add all the rest of the rules fairly easily. At present, leave out the “«”, “»”, and
c-cedilla rules. For the “y” and “Y”, just add a single rule (don’t use any and i ndex). You can now
delete the single rules applying to “a”.

So far, your Quick French keyboard should look like this:

c

¢ Sinplified French Keyboard Program for Keyman 5.0

c

¢ This keyboard programuses a sinplified set of keys

c for typing French, especially for those who don't know the
¢ standard French keyboard.

c

¢ NOTE: This keyboard was created fromthe Keynman keyboard
c programm ng tutorial

c

¢ Witten by Nobody, August 2000

c

NAME " Qui ck French"
Bl TMAP Fr Key
LANGUAGE x0c, x01
LAYOQUT x01

VERSI ON 5.0

begin > use(Min)

aei ouAEl QU
aéi 60AEl QU
aéi 6uAEl QU
aéi oOuAEl QU
aei ouAEl QU

store(vowel)
store(caret)
store(acute)
store(grave)
store(col on)

group(mai n) using keys

+'y' >y
R
"A" o+ any(vowel) > index(caret, 2)
""" + any(vowel) > index(acute, 2)
"*" + any(vowel) > index(grave, 2)
"' + any(vowel) > index(colon,2)

Page 11

Tavultesoft Keyboard Manager 5.0 Developer Documentation

c End of file

Testing the Keyboard

Before you go any further, you should test your keyboard. Save your file, and start a command
prompt. You can use TIKE to compile your keyboard, or type the following command from the
Keyman directory to compile your keyboard:

KMCOWP QFrench. kem QFrench. knx
If any errors occur, refer to the section Compiling Keyboards.

After this, install the keyboard using the Windows Explorer. You should be able to use the keyboard in
a word processor now.

Load a text-editor or word-processor, such as Notepad, or WinWord. Select the Quick French
keyboard and try it out. Type sequences like ~a”e’a’e. Once you are sure that that is all right, then try
typing something like this: "*A problem in the keyboard." (Include the quotes.) You can see the
problem: when you type something in quotes, if the letter after the quote character is a vowel, it will be
converted.

Fixing the Problems

Open up your keyboard program again. The problem exists with two lines; both of the lines regarding
quotes will need to be changed. But first you have to decide how you are going to represent the quote
character when it is to be used as a quote character. Probably the easiest way is just to type it twice.

The line you need to add is this; this will fix it for double quotes; add another line to fix it for single
quotes.

+ any(vowel) > i ndex(vowel, 3)

Another thing that would be nice is to make the diacritics as deadkeys. A deadkey is a key that does
not come out on the screen when it is pressed, but is still remembered in the context. Many European
keyboards use deadkeys.

We will show you the line needed; you will need to remove the old rule to do with carets and explain it
for the caret () character:

+ '~ > deadkey(1)
deadkey(1) + any(vowel) > index(caret, 2)

The deadkey, or dk statement accepts a number identifying it; it will not appear on the screen, but it
does stay in the context. You can have up to 254 different deadkeys, starting from 1.

You will want to add the deadkey rules for all the other characters; don’t forget to use a different
deadkey identifying number for each one. You will also need to modify the quote modification
statements talked about above, to work with the deadkey better; it becomes simpler, as shown below:

dk(2) + o>

You should add this sort of statement for all the diacritics, in case you wish to use the original
character.

There are some other characters we haven’t got support for yet: «, », ¢, and C. We decided to represent
the “«” and “»” characters with double less-than and double more-than symbols. You should be able to
add rules for these, as well as for the “¢” and “C” symbols.

But what if someone wanted to type “<<<<<<< *** >>>>>>>" for instance, as a divider to a section
of a book. They wouldn’t want it to come out as “«««< *** »»»>", So we will make use of a deadkey
to have it come out correctly, as shown below:

"« o+ "< > "< dk(5)
st o+ "> > ">>" dk(5)
dk(5) + "<" > "<" dk(5)
dk(5) + ">" > ">" dk(5)

Page 12

Tavultesoft Keyboard Manager 5.0 Developer Documentation

You should be able to see what this does. Test your keyboard again; there should not be any more
problems. You have completed the Keyman keyboard tutorial.

The following chapter will explain some of the more advanced features of the Keyman keyboard
language; you could use them to extend this keyboard.

Page 13

Tavultesoft Keyboard Manager 5.0 Developer Documentation

CHAPTER 3

Further Programming

This chapter will build on what you have already learnt from chapter 4; it will be assumed that you
understand the basic Keyman keyboard program format.

The following subjects will be discussed in this chapter:
= Unicode
= Multiple groups
= Constraints
= Groups without the “using keys” keywords
= Virtual keys

= Other features

Unicode

Keyman 5.0 adds support for Unicode. There are two changes to the keyboard file format to support
Unicode: the begi n statement, and the addition of the U+xxxx character descriptor. Keyboard files
can contain either or both Unicode and ANSI rules; Keyman will determine whether the application in
use supports Unicode and choose which begin group to use accordingly.

The begi n statement has the following options:

begi n Uni code > use(nyUni codeG oup)
begin ANSI > use(nyANSI G oup)

The ANSI text is optional; this provides seamless backward compatilibity with version 4.0 of Keyman.

Inside a group, the context and output of a rule support Unicode characters. You cannot use Unicode
characters to specify a key — this is not a limitation, as you can specify all keys with ANSI characters or
virtual key combinations anyway. Unicode characters must be specified with a U+xxxx description at
present — no support is available for Unicode format keyboard source files.

For example, in Lao,
UW+0EAB + '0' > WOEDC

will produce the following output:

context is
press o, which corresponds to
output is the combined character

Multiple Groups
In chapter 4, you learnt how to create a file with one group. Multiple groups can be useful for doing

further processing such as changing characters in certain contexts, or, as is done for some South-East
Asian languages, syllable splitting.

The use Statement

A group can be added with the gr oup statement; the previous group ends at the line before the
statement. However, to use the group, you must have a way of jumping from one group to another.
The use statement lets you do this. This statement is legal on the right hand side of a rule; you can put
it anywhere in the string, with one limitation: no i ndex or cont ext statements are allowed after the
use statement; using them will cause run-time errors.

Page 14

Tavultesoft Keyboard Manager 5.0 Developer Documentation

Any output in a group will affect groups called by it, as well as groups after it. The current context will
be modified to add the changes made by a group, before returning to the previous group, or jumping to
another one.

The use statement has the following syntax:

use(groupnarne)

Where gr oupnarre is the name of the group to jump to. After the new group has finished processing,
control will return to the statement after the current one, in the same rule. You can nest quite a few
groups; the exact number is not known.

The return Statement

The r et ur n statement stops all processing of rules and returns control to the typist. No statements are
executed after the r et ur n statement, even if it jumps back through multiple groups.

The r et ur n statement has no parameters; it must be on the right hand side of the rule.

The match and nomatch Rules

Two special rules can be included in a group: the nomat ch rule and the mat ch rule. One of these
two rules will be executed every time the group is entered, unless the rule matched containsar et ur n
statement.

The rules are represented in the following way:

nomat ch > ri ght-hand- si de

mat ch > ri ght - hand-si de
Where the r i ght - hand- si de can include any of the statements legal to the right hand side of a
rule, except for cont ext and i ndex. Both of these rules can jump to other groups with the use
statement, output characters, or stop processing with the r et ur n statement.

If no rule is matched, the nomat ch rule will be executed; if a rule is matched, the mat ch rule will be
executed, after the matched rule has been executed.

Summing Up
Several of the example keyboards on the Tavultesoft website illustrate the usage of these statements
and rules. To sum up:

LHS > RHS or use(group) or return
mat ch > RHS or use(group) or return
nomatch > RHS or use(group) or return

Constraints

Constraints are ordinary rules that restrict certain combinations from being typed. These rules can
occur anywhere, even in a nonmat ch or mat ch rule.

A constraint rule can just be something like the following line:

any(vowel) + any(vowel) > context
This would restrict two vowels from being typed in a row; the second key would just be ignored.

However, you might wish to let the typist know that they typed an illegal combination. This can be
done with the beep statement. The beep statement simply makes a beep at the PC speaker.

Note If you have a sound driver installed, such as the PC Speaker sound driver, or a driver for a
sound card, the beep statement plays the sound identified by the Asterisk entry in the Sounds option in
Control Panel.

The beep statement is legal only on the right hand side of a rule; it just tells Keyman to make a beep,
nothing else. A beep statement can be used both in mat ch and nomat ch rules. Examples of the
beep command:

Page 15

Tavultesoft Keyboard Manager 5.0 Developer Documentation

any(vowel) + any(vowel) > context beep
+ any(illegal) > beep

When you are restricting a set of keys, without context, from being typed, but you don’t want a beep,
another statement is required. The nul statement tells Keyman that nothing is on the right hand side of
the rule. The rule above would become:

+ any(illegal) > nul

This would simply ignore any illegal keys. In some situations with multiple groups, this can be more
useful than it appears. The nul statement is not necessary for the nomat ch and mat ch rules; just
don’t add them if you don’t want them to do anything.

Typically, you would put constraints in the first group of a keyboard program, and every rule matched
would simply be a rule testing for illegal context and key combinations. The nomat ch rule would
then be:

nomat ch > use(rmai ngr oup)

Obviously, you could name the next group anything you like. The mat ch rule would probably be left
out.

Groups Without the “using keys” Keyword

The usi ng keys keyword, introduced in chapter 3, was used in a gr oup statement to tell Keyman
that the group would be needing information on the key pressed. In some situations, you might want
ignore the keystrokes sent, such as for syllable splitting, or for changing the order of stacked diacritics,
which only depends on the context.

Virtual Keys

With what you have learnt so far, any letter, number, or punctuation mark can be identified as a key in
arule. However, you cannot test the Ctrl and Alt states of these keys; with some keyboards, it is
necessary to do so.

Virtual keys allow you to do that. A virtual key keyword can identify almost any key on the keyboard;
a few specialized ones are either reserved or unable to be used.

Virtual keys are allowed only in the key section of a rule, not in the context or the output. A virtual key
is identified by an opening bracket character (‘[’). It ends at a closing bracket character (‘]’). Inside
the brackets, you can have a combination of shift-key codes and the actual virtual key, which is
identified by a “K_" at the start of the keyword.

The keyboard shown further on gives the virtual keys for all keys on the standard US 101 key
keyboard. (Note: The arrangement may not be identical to your keyboard.)

Important You must not use virtual keys in the output. Keyman will recognize them, but output will
be garbled. This version of Keyman does not support virtual keys in the output.

Page 16

Tavultesoft Keyboard Manager 5.0 Developer Documentation

Esc F1

K_F1

F2
K_F2

F3
K_F3

F4
K_F4

F5
K_F5

F6
K_F6

F7
K_F7

F8
K_F8

F9
K_F9

F10
K_F10

F11
K_F11

F12
K_F12

K_ESC

1

K1

Q

K_Q

A

K_A

2

K_2

w

K_W

S

K_S

3

K_3

E

K_E

D

K_D

4

K_4

R

K_R

F

K_F

5

K5

T

K_T

G

K_G

6

K_6

Y

K_Y

H

K_H

7

K7

8

K_8

9

K9

o

KO

L

K L

0

K_0

[}

K_P

Backspace

K_BKQUOTE K_HYPHEN

[

K_LBRKT

K_EQUAL

]

K_RBRKT

K_BKSP

Tab)

K_U

J

K_J

K_I

K

K_K

K_TAB

Caps Lock Eqter

CAPS*

K_COLON | K_QUOTE K_ENTER

z

Kz

Ctrl Alt

LCTRL* ALT*
PrtScn | Scroll | Pause
K_PRTSCN K_SCROLL K_PAUSE

Insert | Home | Pg Up

Shift X

K_X

C

K_C

\Y

KV

B

K_B

N

K_N

M

K_M

/ Shift \

K_SLASH SHIFT* K_BKSLASH

SHIFT* K_COMMA

K_PERIOD

Ctrl
K_SPACE

‘Alt‘

RALT*

RCTRL*

Num / *

K_INS K_HOME [K_PGUP K_NUMLOCK| K_NPSLASH | K_NPSTAR | K_NPMINUS

7 8 9

K_NP7 | K_NP8 | K_NP9 +

4 5 6 K_NPPLUS

KNPa | ket | KNPG

Delete | End Pg Dn

K_DEL | K_END | K_PGDN

A 1 2 3
K_UP KNP1 | KNP2 | KNP3 | Enter
€« v > 0 K_ENTER

K_LEFT [K_DOWN | K_RIGHT K_NPO K_NPDOT

Figure 5.1: The Virtual keys keyboard layout

* Keys marked by a star are special keys that will be discussed in more detail further on.

t This key can be either K_KP5 when NUM LOCK is off, or K_NP5 when NUM LOCK is on; this applies
to all the keys on the number pad - when NUM LOCK is off, the movement keys will be used.

For example, to test for the SCROLL LOCK key, you would have the following line:
+ [K_SCROLL] > output

If you want to test for a key that is used with SHIFT, CTRL, ALT, or CAPS LOCK, then you would proceed
it with one of the following keywords:

Shift key to test Keyword
SHIFT SHI FT
Either cTRL CTRL
Left CTRL LCTRL
Right CTRL RCTRL
Either ALT ALT

Left ALT LALT
Right ALT RALT
CAPS LOCK 0N CAPS
CAPS LOCK Off NCAPS

So, if you wanted to test for Right ALT + the letter “e”, you would have the following line:

Page 17

Tavultesoft Keyboard Manager 5.0 Developer Documentation

+ [RALT K E] > output

This version of Keyman does not let you use stores for virtual keys.

Other Features

Other Header Statements
There are three optional header statements that Keyman recognizes, all working with CAPS LOCK.

The first statement, CAPS ALWAYS OFF, makes sure that CAPS LOCK cannot be turned on while the
keyboard is active, and it turns cAPS LOCK off when the keyboard is switched on. Put this statement on
a single line in the header, as follows:

CAPS ALVAYS OFF

The other two statements, CAPS ON ONLY, and SHI FT FREES CAPS are usually used together.
CAPS ON ONLY makes the cAps LOCK key like a typewriter CAPS LOCK, where pressing it turns it on
only. SHI FT FREES CAPS tells Keyman to recognize SHIFT and turns capitals off. Using these two
together makes Keyman work like many European keyboards. These two statements each take a single
line in the header, as shown below:

SHI FT FREES CAPS
CAPS ON ONLY

nul In the Context

The nul statement is used at the start of the context to tell Keyman only to match that rule if there are
only as many characters output on the screen as in the context. This statement is not very likely to be
used; there is a possibility you may use it for testing after a keyboard has been turned on, or to change a
character into the best possible output without knowing what is before it. For example,

nul +'a" >"'A ¢ Not very useful!

The outs Statement

The out s statement places the content of a store into the string at its position. You would probably
only use the out s statement for creating large stores. Usage:

out s(st orenane)

Long Rules

When you are making your keyboard, you may find that some lines are very long and are hard to read
if made shorter. Keyman has a way of getting around this: by putting a backslash (\) on the very end of
the line, Keyman is told that the line should be joined with the next one. You can do this for multiple
lines if necessary, up to 1K (about 1000 characters) long. The backslash must come after comments if
you have them. For example,

any(Lower CaseVowel) + any(Upper CaseVowel) >\
i ndex(Upper CaseVowel , 1) ¢ Fromprevious line \
i ndex(Lower CaseVowel , 2) ¢ From previous line

Page 18

Tavultesoft Keyboard Manager 5.0 Developer Documentation

CHAPTER 4

Distributing Your Keyboards

Keyman 5.0 provides several options for distributing your keyboards. These are listed in order of
complexity, and each distribution method builds on the previous method. Keyman 4.0 only supported
the first method.

+. Keyboard file: This is your basic compiled keyboard file. Simple to create and simple to
w==ieUse — just double click to install. Uninstallation is provided through the Add/Remove
Programs Control Panel applet. The user must have Keyman installed to use a keyboard file.

4y Keyboard package: This contains a keyboard file, plus fonts, and any additional files you
meseies WIiSh to include. The end user can install this by double clicking, and installation is as simple
as with the standard keyboard file. Uninstallation is similar to a keyboard file. The user must
have Keyman installed to use a keyboard package.

b Redistributable installer: This contains one or more keyboard packages, plus fonts and
additional files, and the Keyman redistributable files. This is a totally standalone package, and
the user can install it by double clicking and following the instructions on screen. Users can
choose to install any or none of the keyboards packages included in the installer.
Uninstallation is again available through Control Panel.

Keyman File Types

Keyman has the following file types:

] A keyboard source file (.kmn). This file contains the instructions which the Keyman compiler will use
bom e to create a keyboard file that can be used with Keyman. You need TIKE to use this file.

£ A compiled keyboard file ((kmx). You can install this into Keyman. This is the primary file
s==ue type in Keyman.

41 A keyboard package source file (.kps). This file contains a list of files and other details that
w==w= Will be packaged up by the Keyman compiler to create a keyboard package. You need TIKE
to use this file.

4y Akeyboard package file ((kmp). This file contains a keyboard, plus fonts, instructions for use
meseies AN any other files that a keyboard developer wants to include.

e A redistributable installer (.exe). This file contains one or more keyboard package files, plus the
e s necessary files to run Keyman on an end-user system. It does not include the Keyman development
environment or other files.

These files types are

Creating a Keyboard Package

Once you have completed writing your keyboard, you will probably want to package it with fonts and
instructions on how to use it. In TIKE, you can create a package from the File/New menu option.

The following dialog will appear. You should click the tabs at the top to fill in details for each page of
the dialog.

Page 19

Tavultesoft Keyboard Manager 5.0 Developer Documentation

[} tasted) Fabaoge i a

(BT e | Fomir | Fem | e | Bl |

Cieomial i Easteiaid 1 bl iiedid w0 i pech e

[ETS| - |
Lo
[T

T o L]

Aeb [e |
)
O |
You should fill in details of your keyboard -- name, version, copyright, and contact details here. These

details will appear when you view a keyboard package or install a keyboard package. If a Start Menu
folder is created, it will have the name of the package as given here.

[} st Fabage b a

You can add fonts in the following page -- this is pretty self explanatory. If the font is already

installed, Keyman won't install it again.

[(et parba il b
e | e [P e | Oy | Bl |

e R L ST T Y
Fanl romm s

|
_ e |

Any additional files that you want to include can be listed here. You can also list these files in the Start
Menu, which can be useful for documentation, etc.

iﬁqﬂ-m-utl
e
[|| e |
|
_ e |

You can create either a self-extracting executable, identical to the redistributable installer, or just a
package. If you want multiple keyboards in one distributable file, you should create a package file
only. If you intend to distribute the keyboard in a package, you should probably not include an
Uninstall icon in the Start Menu.

Page 20

Tavultesoft Keyboard Manager 5.0

T A

ol wio | Pty | Pl [Dvow] B |

T | i b s TR
B A e S L
O Padk g e
T g il e i i, i e oo I

R bl Bl il i w ol e

- |
Gee |

Developer Documentation

Once all the details are filled in, you must save the package before attempting to build it. You can
build the package with the "Create package" button, and then once built, you can test it.

it (e d) Pkt k1
o wio | Pty | e | Dy B
bl b

e | -
I

|
Gew |

Creating a Redistributable Installer

Creating a redistributable installer is very similar to creating a keyboard package. You create a new

installer from the File New menu option.

The only page which is significantly different is the first page, which lets you select the packages you

want to install together.
T T T R Al
S | mie | Pty | Pl | Dpeom | B |

e e PSR P L
[
I—

r

) E
B i iy e s sk @ e T bkt d P

Ak [e |)
I."a--l

You should fill in all appropriate details on the subsequent pages, and then save the package source.
Clicking Create Package will then create the installer. This should be tested to ensure that you have

correctly configured your package.

Technical Details

Keyman packages use the industry standard ZIP file format. You can open them using WinZip or other
archiving utilities. Keyman provides a facility for this in the the context menu for the package
(available by clicking right mouse button on the icon in Explorer). A special file, kmp.inf, included in
the archive, contains all the details that Keyman uses to control installation of the keyboard.
Information on the kmp.inf and kmredist.inf file formats will be included at a later date.

	Introduction
	Documentation included in this distribution

	Writing a Simple Keyboard Program
	Overview
	Arranging the Layout on the Keyboard
	Writing the Keyboard Program
	Comments and Blank Lines
	The Header
	The NAME Statement
	The BITMAP Statement
	The VERSION Statement
	The LANGUAGE and LAYOUT Statements
	The begin Statement
	Conclusion

	The Rules
	The Groups
	Simple Rules
	Using the Context in More Complex Rules
	The Any, Index, and Store Statements
	The context Statement
	Testing the Keyboard
	Fixing the Problems

	Further Programming
	Unicode
	Multiple Groups
	The use Statement
	The return Statement
	The match and nomatch Rules
	Summing Up

	Constraints
	Groups Without the “using keys” Keyword
	Virtual Keys
	Other Features
	Other Header Statements
	nul In the Context
	The outs Statement
	Long Rules

	Distributing Your Keyboards
	Keyman File Types
	Creating a Keyboard Package
	Creating a Redistributable Installer
	Technical Details

		2000-08-07T21:46:50+1100
	Hobart, Australia
	Marc Durdin
	<none>

