

Tavultesoft Keyboard Manager

User’s Guide and Reference

VERSION 3.2

Tavultesoft

This documentation may be freely copied, but the copyright notice must not be

altered or removed. No part of this documentation may be modified or edited.

Tavultesoft holds no responsibility for any errors in this documentation or the

use of its software.

© 1994 Marc Durdin / Tavultesoft. All rights reserved.

This documentation was created in Word for Windows 6.0.

Microsoft, Word for Windows, Access, and Excel are registered trademarks,

and Windows is a trademark of Microsoft Corporation.

Ami Pro is a registered trademark of Lotus Corp.

Compaq is a registered trademark of Compaq Computer Corporation.

Any other trademarks referred to remain the property of their respective

holders.

C O N T E N T S

Chapter 1 Introduction .. 5

Setting Up .. 5

Before You Run Setup ... 5

Running Setup ... 6

Keyman Quick Start ... 6

Starting Keyman .. 6

Beginning Work with Keyman .. 7

New Features in Tavultesoft Keyboard Manager 3.1 8

Chapter 2 Using Keyman .. 9

The Keyman Window .. 9

Using the Options Dialog Box ... 10

Loading and Unloading Keyboards ... 10

Configuring the Keyboard Buttons ... 11

Changing the Default Hotkeys .. 13

Keyboard Hotkeys ... 14

Conclusion ... 14

Chapter 3 Advanced Keyman Functions ... 15

Starting Keyman When Windows Starts ... 15

Adding Keyboards to the Keyman Startup List ... 15

Using Macros to Switch Languages .. 16

Chapter 4 Writing a Simple Keyboard Program.. 19

Overview .. 19

Arranging the Layout on the Keyboard ... 19

Writing the Keyboard Program .. 20

Comments and Blank Lines ... 20

The Header .. 21

The Rules ... 23

Chapter 5 Further Programming .. 31
Multiple Groups ... 31

Constraints ... 32

Groups Without the “using keys” Keyword .. 33

Virtual Keys ... 33

Other Features ... 35

Chapter 6 TIKE... 37

Overview on Using TIKE .. 37

Creating, Loading, Saving, and Editing Files .. 38

Selecting an Editing Font .. 38

Searching and Replacing Text ... 38

Testing Your Keyboard ... 38

Character Map ... 39

Printing .. 39

Reference ... 39

Appendix 1 The KEYMAN.INI File ... 41
The [Options] Section .. 41

The [Advanced] Section .. 42

The [Extensions] Section ... 42

The [TIKE] Section ... 43

Appendix 2 Some Keyboard Templates ... 49

 5

C H A P T E R 1

Introduction

Welcome to the Tavultesoft Keyboard Manager. With the Tavultesoft

Keyboard Manager (Keyman), it becomes practical to enter and edit

documents that use languages and scripts other than English, for a wide

variety of Windows application programs such as word processors,

spreadsheets, databases, and desktop publishers.

Keyman has been developed with particular reference to the languages of

South-East Asia and their scripts, but it can be readily adapted for many other

languages. Keyman will allow you to mix many languages in one document,

in your favorite word processor.

This manual will guide you through the basics of using Keyman and writing

keyboards for it, and explain the more advanced options that Keyman gives

you. Reference information is given in the Reference Documentation.

Setting Up

You install Keyman on your computer using the program SETUP.EXE. The

Setup program installs Keyman, the help file, sample keyboards, and adds

icons to Program Manager.

Important You cannot simply copy files from the distribution disks to your

hard disk and run Keyman. You must use the Setup program, which

decompresses and installs the files in appropriate directories.

Before You Run Setup

Before you install Keyman, you should make sure that your computer meets

certain hardware and software requirements.

Check the Hardware and System Requirements

To run Keyman, you must have certain hardware and software installed on

your computer. The system requirements include:

▪ Any IBM®-compatible machine with a 80286 processor or higher.

▪ A hard disk.

▪ A 5 1/4" or 3 1/2" floppy drive.

▪ An EGA, VGA, Hercules or better display.

▪ One megabyte of memory.

6 Tavultesoft Keyboard Manager

▪ A mouse.

▪ Microsoft® MS-DOS® version 3.1 or later.

▪ Windows version 3.1 or later in standard or enhanced mode.

Running Setup

When you run the Setup program, you'll set a path for Keyman and then select

the Keyman files you want to install.

➔ To start Setup

1. Insert the Keyman Setup Disk in drive A: or B:

2. From the File menu of the Program Manager or File Manager, choose

Run.

3. Type a:setup or b:setup, depending on which drive you are installing

from.

4. Type the directory to install to, or press ENTER to use the default.

5. Select the keyboards from the list that you wish to be loaded automatically

when Keyman starts. (Note: it will be easier to start using Keyman if you

select at least one keyboard during installation.)

6. Follow any other instructions until Setup is finished.

Keyman Quick Start

This documentation assumes you are familiar with basic Windows techniques.

To brush up on these skills, review your Windows documentation.

Note If you’re experienced with using SIL CC, you’ll easily learn how to

create keyboards with Tavultesoft Keyboard Manager. However, you should

read the sections on how to use Keyman and the introductory programming

section, because there are some things different in Keyman.

The rest of this chapter presents the basic skills and concepts that you need to

start using Keyman with various applications. This is only a brief overview,

and will help you in starting to use Keyman, so you should read later chapters

for more information.

Starting Keyman

Setup automatically creates a Tavultesoft Keyboard Manager group and one or

more Keyman icons in Program Manager.

 Chapter 1 Introduction 7

➔ To start Keyman

 Double-click on the Keyman icon in Program Manager.

 Use CTRL+TAB to switch through the active groups until you get to the

Keyman group, cursor through it to the Keyman item, and press ENTER.

Keyman will start, showing a brief introductory screen while loading.

Normally, Keyman will be hidden from view after it has started. If the

Keyman window appears, you can select the Hide button to hide Keyman

from view. As Keyman works the same way as any ordinary Windows

application, you can exit Keyman at any time, or switch to it, unless the

window is hidden.

Beginning Work with Keyman

Once Keyman is loaded, you will notice that there will be some more buttons

in the title bar, next to the control menu. These buttons are called keyboard

buttons.

Note The instructions and descriptions in this section apply only when you

have just installed Keyman. If you change any settings in Keyman, some of

the hotkeys or instructions may be incorrect.

Keyboard Buttons

Figure 1.1 The Program Manager title bar after loading Keyman

Each one of these keyboard buttons is associated with a keyboard program that

Keyman has loaded. Most keyboard programs define the keyboard layout for

a foreign language.

➔ To type in another language

1. Select the language you want to use in either of the following ways:

 Click on the appropriate keyboard button in the title bar.

 Press the hotkey for that keyboard, or ALT+= if it was the last keyboard

used. (See Keyboard Hotkeys for more information on this).

2. Select a font that is appropriate for that language in your application.

3. Start typing in that language.

After you have selected the right font and keyboard button, Keyman will

interpret the keys you type and convert them to the new language. If you are

using a TrueType font for your foreign language, you can use bold, italic, and

other font styles without any problems.

Most of the time, you will still want to be able to type in English.

8 Tavultesoft Keyboard Manager

➔ To type in English

 Turn off any active keyboard button by clicking on it.

 If any keyboard button is activated, press ALT+= to turn it off.

New Features in Tavultesoft Keyboard Manager 3.1

The following table lists the features introduced since version 3.0 of Keyman

and tells you where to look for more information on them:

New Feature For More Information

Virtual key input Chapter 5

Caps Lock support Chapter 5

Hotkey to bring up a menu of loaded

keyboards

Chapter 2

Setting hotkeys to any virtual key Chapter 2,4,5

 9

C H A P T E R 2

Using Keyman

Learning how to use the Tavultesoft Keyboard Manager is very easy and

should take less than fifteen minutes. First you will learn about the Keyman

window, and then the more advanced features of the Options window.

This chapter provides instructions for the use of Keyman, not modifying or

creating new keyboard programs. For an overview on creating keyboard

programs, see chapter...

The Keyman Window

Normally, when you start Keyman, its window is hidden from view. This is

so that it will be out of the way; inexperienced users will not be confused by

having another window floating around. However, most users will want to be

able to use the Keyman window. There are several different ways to show the

Keyman window.

➔ To show the Keyman window

 Click the right mouse button on any keyboard button, or double click on the

Keyman icon in Program Manager.

 Press CTRL+ALT+= to display a menu of possible items; select Show
Keyman.

The Keyman window will appear; it will look like the picture shown below:

Figure 2.1: The Keyman window

As you can see, the Keyman window is very simple, and there is little to learn.

The five buttons in the Keyman window, Hide, About, Options, Exit and

Help, can be clicked on with the mouse or are available via the keyboard by

pressing the underlined letter shown on the button.

The first button, Hide, is pretty obvious; it hides the Keyman window from

view. The window may be shown again by following the instructions above.

The About button, is likewise, easy to understand. When you select this

button, Keyman will display a picture and information about the version of

Keyman, as well as copyright messages.

10 Tavultesoft Keyboard Manager

The Options button brings up the Options dialog box. The Options dialog

box is described later on in this chapter.

The Exit button exits Keyman and unloads all keyboard programs from

memory.

Help runs Windows Help with Keyman Help loaded.

Using the Options Dialog Box

The Options dialog box appears when you click the Options button in the

Keyman window. It allows you to load and unload keyboards, configure the

keyboard buttons, and set general hotkeys for Keyman.

Note You will notice, if you used Keyman 3.0, that the dialog box is smaller

and has less in it than the previous version. This is because the debugging

options have been removed, and the hotkey options moved to a separate dialog

box.

Figure 2.2 The Options dialog box

Loading and Unloading Keyboards

You can load and unload keyboards using the Options dialog box. The

Keyboards group has a list of the currently loaded keyboards, two boxes

showing information about the keyboard you have selected in the list, and two

buttons: Load and Unload.

➔ To get information on a loaded keyboard

1. Open the Options dialog box.

2. Select the keyboard you wish to get information about from the keyboard

list.

 Chapter 2 Using Keyman 11

The information will appear in the boxes below the list. You can scroll these

boxes by clicking in them and moving right; however, you cannot edit them.

➔ To load a keyboard

1. Open the Options dialog box.

2. Click on the Load button.

3. Select the file name for the keyboard you wish to load, and click Ok.

The loaded keyboard will appear at the end of the list of keyboards, and its

keyboard button will appear along with the others. (If Keyman detects a

keyboard program error, it will be indicated, and the keyboard will not load.)

➔ To unload a keyboard

1. Open the Options dialog box.

2. Select the keyboard you wish to unload from the keyboard list.

3. Click the Unload button.

The keyboard will be unloaded, its name will be removed from the list, and its

keyboard button will disappear.

Configuring the Keyboard Buttons

The default placement and drawing options for keyboard buttons is for them to

be drawn straight onto the active title bar. This works well in most situations,

but in some programs, such as Ami Pro and Microsoft Word for Windows 6.0,

the title bar is not a standard one, and when Keyman draws onto the title bar, it

erases some things already there. Sometimes you might also use a program

which uses the left side of the title bar for a quick menu, or a language switch

(such as Microsoft Windows Thai Edition). You can move the keyboard

buttons to the right hand side of the title bar in this case. Keyman can also use

a "floating window" which can be placed either on the title bar, where it

doesn't interfere with Ami Pro or Winword 6, or anywhere else on the screen.

➔ To put the keyboard buttons on the right-hand side of the title bar

1. Open the Options dialog box

2. Click on the Right Aligned radio button.

The keyboard buttons will move immediately to the right hand side of the title

bar, and their order will change to right to left.

The Floating Window Settings dialog box lets you place the keyboard buttons

anywhere on the screen

12 Tavultesoft Keyboard Manager

Figure 2.3: The Floating Window Settings dialog box

➔ To put the keyboard buttons in the floating window on the title bar

1. Open the Options dialog box.

2. Click on the Enabled checkbox in the Floating Window group.

3. Click on the Settings button in the same group.

4. Select On Title Bar in the dialog box shown below:

5. Click Ok to close the Floating Window Settings dialog box.

The keyboard buttons will be put in a floating window and will be on the title

bar. Although this may not look any different, it works differently and may be

more satisfactory with some applications, as mentioned above.

➔ To put the keyboard buttons anywhere on the screen

1. Open the Options dialog box.

2. Make sure the Enabled checkbox in the Floating Window group is

checked.

3. Click on the Settings button in the same group.

4. Select Anywhere in the dialog box that appears

5. Check the Grab-tag mover checkbox.

6. Click Ok to close the Floating Window Settings dialog box.

7. Drag the floating window which will have appeared, via the tag on the

edge of the window, to the location you want it on the screen.

The floating window will stay in that position until you drag it to another

position, or you change the floating window settings. You can also lock the

keyboard buttons in place, so that you cannot accidentally move them.

➔ To lock the keyboard buttons in place

1. Open the Options dialog box.

2. Click on the Settings button in the Floating Window group.

 Chapter 2 Using Keyman 13

3. Make sure that the Grab-tag mover checkbox is unchecked.

4. Click Ok to accept your settings and close the dialog box.

The tag on the edge of the floating window will disappear and you will not be

able to move the window.

Changing the Default Hotkeys

Some programs may use the default hotkeys used by Keyman for other

purposes; for example, Microsoft Excel uses ALT+= for a shortcut to entering a

formula. If you commonly use these shortcuts, then you may wish to change

the hotkeys set by default in Keyman. You may also wish to change them to a

single key.

Note The reason the somewhat obscure ALT+= is used for the keyboard

toggle hotkey is that when we were developing the first version of Keyman,

we decided to make it similar to the hotkey to activate the control menu,

which is ALT+SPACEBAR for application windows, and ALT+- for document

windows. This hotkey also seemed to be unused. (We only started using

Excel later!) Keyman 3.1 is the first version which allows you to change the

default hotkeys.

There are three hotkeys you can change from the Set Hotkeys dialog box.

They are (when installed): ALT+=, the keyboard toggle hotkey;

CTRL+SHIFT+W, the hotkey to switch to English, and CTRL+ALT+=, the

Keyman menu hotkey.

Figure 2.4: The Set Hotkeys dialog box

➔ To change a hotkey

1. Open the Options dialog box.

2. Click on the Hotkeys button.

3. Select the Shift, Ctrl, and Alt states you want for the hotkey you are

changing, and choose the hotkey you want to use from the dropdown list.

4. Click Ok to update the hotkey and close the dialog box.

14 Tavultesoft Keyboard Manager

A good key to use for toggle may be ` (backquote), or PAUSE. We have tried

using CTRL+ALT+F1 for the English mode hotkey, CTRL+ALT+F2 for a second

language (see the programming manual for information on how to change

individual language hotkeys), and so on. Experiment!

Keyboard Hotkeys

Each keyboard program has a hotkey that can be used to turn the keyboard on.

This hotkey can be any combination of SHIFT, CTRL, ALT and any other key on

the keyboard.

➔ To find out what hotkey a keyboard has

1. Open the Options dialog box.

2. Select the keyboard you want to know the hotkey of from the list.

- Or -

1. Press the Keyman menu hotkey (CTRL+ALT+=, unless you have changed

it).

If you used the first method, the file name of the keyboard and the hotkey it

uses will be shown in a box below the keyboard list. You cannot change this

hotkey from the Options dialog box, only view it.

Otherwise, the hotkey will be shown to the right of the name of the keyboard

in the menu.

Conclusion

You should now be able to select keyboards in different ways, load and unload

keyboards, change general hotkeys, and arrange the keyboard buttons to your

preference.

 15

C H A P T E R 3

Advanced Keyman Functions

When using the Tavultesoft Keyboard Manager, you may wish to make

macros that switch keyboards, or a database that selects the correct language

for a field, for example. All recent Microsoft applications let you do this very

easily; most other applications with a good macro programming language will

also let you do it. If you didn’t setup Keyman to run when you started

Windows, you will also learn how to do this in this chapter, along with adding

keyboards to be loaded when Keyman starts.

Starting Keyman When Windows Starts

When using Program Manager, it is very easy to set up Keyman to load when

Windows does.

Note If you are using a program shell other than Program Manager, such as

Norton Desktop for Windows, or Compaq’s Tabworks, these instructions may

not apply. See the documentation for your shell program for more information

on how to run programs when Windows starts, for these applications.

➔ To load Keyman when Windows starts

1. Find the group Startup in Program Manager, or create it if it doesn’t exist

(File•New, select Program Group, type Startup, and press ENTER).

2. Find the Keyman icon.

3. Hold down CTRL and drag the Keyman icon to the Startup group.

The Keyman icon will be copied to the Startup group, and the next time you

start Windows, Keyman will start automatically.

Note You can stop Keyman (and all the other programs in your Startup

group) from loading by holding down SHIFT when the Windows logo appears

after typing WIN at the DOS prompt.

Adding Keyboards to the Keyman Startup List

When you installed Keyman, you selected a list of keyboard programs to load

when Keyman was started. You may wish to change this list later on; to add a

keyboard, or remove one.

16 Tavultesoft Keyboard Manager

Note If you are using a program shell other than Program Manager, such as

Norton Desktop for Windows, or Compaq’s Tabworks, these instructions may

not apply. See the documentation for your shell program for more information

on how to modify the command line for an icon.

➔ To add a keyboard to or remove a keyboard from the Keyman startup list

1. Select the Keyman icon, but don’t start Keyman. (i.e. click once, not

twice).

2. Press ALT+ENTER, or choose File•Properties.

3. Use TAB to move to the Command Line text box, or click in the box.

The text in the box should look similar to this:

 C:\KEYMAN\KEYMAN mykbd.kmn minetoo.kmn

and there -h may be in the command line too.

The start of the command line is the Keyman program; each keyboard listed

after that is loaded when Keyman starts. You can add a keyboard simply by

putting a space at the end and typing its name, and you can remove one using

BACKSPACE.

You can also make Keyman hidden at startup, or make it stay visible.

➔ To hide Keyman or make it visible at startup

1. Look for a -h in the command line.

2. If you wish to make Keyman visible at startup, delete this -h, otherwise, if

it doesn’t exist, add it to the end of the command line.

The changes will be ignored until the next time you start Keyman.

Using Macros to Switch Languages

Most major application programs include macro programming languages of

differing degrees of complexity. Using these macro languages, it is usually

possible to make a language switch inside a macro. You may want to use this

for a database, or a word processor, to switch languages and font at the same

time for example. This documentation will talk only about Microsoft

applications, although most others should be fairly similar. Check your

application’s documentation for information on how to do macro

programming.

➔ To switch languages in Microsoft Word 2.0 or later and Microsoft Excel

5.0 or later

1. Create a new macro, or edit an existing one.

 Chapter 3 Advanced Keyman Functions 17

2. At the point where you want the language switch, in your macro, add a

blank line and the statement SendKeys followed by the key combination

used for hotkey for the keyboard you want to switch to, in quotes.

Use the following table for the characters used for CTRL, SHIFT, and ALT:

For the shift key: Use the character:

ALT %

CTRL ^

SHIFT +

For example, to send the hotkey CTRL+SHIFT+L, to turn on the Lao

keyboard, use:

SendKeys "^+L"

In Microsoft Access, the process is much the same; however, you must set up

an event for when you enter the field; see Access's documentation for more

information.

Switching back to English is very simple; instead of using a keyboard hotkey,

use the hotkey specified in the Hotkey dialog box for the ‘hotkey to always

turn keyboard off.’ You are probably better off avoiding the keyboard switch

hotkey (usually ALT+=), because you will not know the state of the keyboard

at the time you send it.

For hotkeys that are not straight letters or numbers, see the documentation for

your application on how to represent them.

 19

C H A P T E R 4

Writing a Simple Keyboard Program

There are two main steps to writing a keyboard program. The first step is to

arrange the layout of the characters on the keyboard. Then, you enter the

keyboard program according to your layout.

This chapter shows you the basic steps in writing a keyboard program; we will

be using a simplified French keyboard as an example to follow through.

Important Even if you have some experience in writing CC tables, you

should still read this chapter, as it shows you the basic steps and structure of a

keyboard file, which is slightly different to CC tables. However, your

experience should help you learn the format more quickly.

Overview

You will be designing a simplified French keyboard for people who don’t

know the standard French keyboard layout; you will have to go through both

steps mentioned above. This French keyboard (Quick French) doesn’t follow

the standard French layout; instead, it uses a basic English keyboard with

some deadkeys to define vowel diacritics and other French characters needed.

You will need to know the character codes in the font that goes with this

keyboard (for Quick French, Times New Roman and Arial work fine); the

characters you will be using may be upper-ascii. If you do not have a font for

the language you will be working with, you will need to obtain or create one;

Keyman does not do anything about fonts.

Arranging the Layout on the Keyboard

First of all, you have to know what codes are used for the characters you are

mapping with your keyboard program. (You can use the Character Map

application that is provided with Windows to help you find these codes.)

For the Quick French keyboard, you will need all the vowels with different

diacritics, some French symbols, and c-cedilla (upper and lower case); the

codes needed are listed below, along with some others that are used by other

European languages:

Char Code Char Code Char Code Char Code Char Code Char Code

À 192 È 200 Ì 204 Ò 210 Ù 217

à 224 è 232 ì 236 ò 242 ù 249

Á 193 É 201 Í 205 Ó 211 Ú 218 Ý 221

á 225 é 233 í 237 ó 243 ú 250 ý 253

20 Tavultesoft Keyboard Manager

Char Code Char Code Char Code Char Code Char Code Char Code

Â 194 Ê 202 Î 206 Ô 212 Û 219 Ç 199

â 226 ê 234 î 238 ô 244 û 251 ç 254

Ä 196 Ë 203 Ï 207 Ö 214 Ü 220 « 171

ä 228 ë 235 ï 239 ö 246 ü 252 » 187

Now that you know the character codes needed, you must decide how you

want to key them. For the purposes of this example, the codes will be keyed

according to the following table:

Code Keys to create code

à, À, ... backquote (`), followed by the corresponding vowel key

á, Á, ... quote ('), followed by the corresponding vowel key

â, Â, ... caret (^, SHIFT+6), followed by the corresponding vowel key

ä, Ä, ... double quote ("), followed by the corresponding vowel key

ç, Ç quote ('), followed by small or capital C.

«,» double less-than symbol (<<) or double more-than symbol (>>)

The basic design of the keyboard is done. There will be more to come, but

first you are going to write the first version of the keyboard program.

Writing the Keyboard Program

Before you start this section, start a text editor (such as Windows Notepad),

and begin editing a new file. The Tavultesoft Integrated Keyboard Editor has

been designed for this purpose and works closely with Keyman (see

chapter 6). (DOS text editors are okay, too, but not quite as convenient.)

A keyboard program is divided into two sections: the header, and the rules.

The header lets you define the name of the keyboard, hotkeys, and other

general settings. The rules are divided into groups where you define how the

keyboard responds to keystrokes. Every keyboard program must have both of

these sections. A keyboard program normally has the extension .KMN and is

an ANSI text file.

Note A keyboard program is in ANSI text format, not ASCII text format,

because Windows uses the ANSI character set. If you are using a DOS text

editor, you must remember that the characters you see on the screen aren’t

necessarily the same as the ones you’d see if you used a Windows text editor,

such as Notepad.

Comments and Blank Lines

A Keyboard Program can have a comment at any point. The comment is

identified by a letter ‘c’, with a space on either side (unless the comment is at

 Chapter 4 Writing a Simple Keyboard Program 21

the start of the line, in which case you only need a space on the right). The

end of the line marks the end of the comment.

Blank lines are ignored by Keyman; you can have them anywhere in a

keyboard program.

Examples:

c This is a comment

... c This is a comment, also

It is a good idea to use comments to document your keyboard program. They

will help you remember why you did something in a particular way, and they

will also help other people understand the program.

Add some comments to the start of the Quick French keyboard program, in

your text editor, describing who wrote it, when it was written, and anything

else needed, such as instructions on how to use the keyboard (from the tables

above). You could even add a copyright notice, for a keyboard that uses

complex algorithms, for example.

Example:

c

c Simplified French Keyboard Program for Keyman 3.2

c

c This keyboard program uses a simplified set of keys

c for typing French, especially for those who don’t know the

c standard French keyboard.

c

c NOTE: This keyboard was created from the Keyman keyboard

c programming tutorial.

c

c Written by Anybody, 15 December 1994

c

The Header

The header is easy to create; it consists of statements that help Keyman

identify the keyboard and set default options for it. Each statement in the

header must be on a separate line and is usually written with capital letters,

although that is not required. Keeping the statements in the header in upper

case helps you identify them easily, and keeps them consistent with keyboard

programs other people might write.

Five statements are required in the header. Some other optional statements are

described in later chapters. The required statements are: NAME, BITMAPS,

HOTKEY, VERSION, and begin. The begin statement is usually written in

lower case.

The NAME Statement

The NAME statement tells Keyman the long descriptive name of the keyboard,

which can be as long as eighty characters, unlike a file name. This name is

22 Tavultesoft Keyboard Manager

used in the Keyman menu, and in the Options dialog box. The name must be

enclosed in double quotes ("). Any character except the double quote is legal

within the name.

For our Quick French keyboard, we will use the name “Quick French.” Add

the NAME statement to the keyboard program, as follows:

NAME "Quick French"

You can give your keyboard program a different name, if you wish.

The BITMAPS Statement

The BITMAPS statement tells Keyman which bitmap files are used for the

keyboard button for that keyboard program, both on and off. The bitmaps use

the standard Windows .BMP format; you can create them using Paintbrush.

You can make them any size, but if you wish to have them on the title bar,

then the height should be 18 pixels, for VGA. (See the Reference Manual for

the heights for other standard screens.) The bitmaps can be monochrome or

color, but the .BMP file must be less than 64 kilobytes. The BITMAPS

statement accepts the names of the bitmap files, in upper or lower case, with or

without the .BMP extension included, with the on bitmap filename first. The

file names are not enclosed in quotes.

You can create your own bitmaps for the Quick French keyboard, or use two

supplied bitmaps; FRKEY1.BMP and FRKEY0.BMP (on and off

respectively). Add the BITMAPS statement, as follows:

BITMAPS FrKey1 FrKey0

If you make your own bitmaps, replace these names with your new filenames.

The HOTKEY Statement

The HOTKEY statement tells Keyman the hotkey that will turn the keyboard

on. You can represent the hotkey in two different ways; for now we will stick

with the simpler one. The hotkey can have a combination of CTRL, SHIFT, ALT

and a letter or number key. You represent the shift codes according to the

following table:

Shift key Character to represent key

CTRL ^ (caret)

SHIFT + (plus sign)

ALT % (percent sign)

For example, to represent CTRL+SHIFT+Z, you would have "^+Z". The hotkey

must be in double quotes.

For the Quick French keyboard, a good hotkey to use would be CTRL+ALT+F.

(CTRL+SHIFT+F would also be okay, however, Winword 6 already uses that.)

Add the HOTKEY statement to the program, as follows:

HOTKEY "^%F"

 Chapter 4 Writing a Simple Keyboard Program 23

The VERSION Statement

The VERSION statement is the simplest statement; for a keyboard intended for

version 3.2 of Keyman, simply add 3.2 to the end of the line.

The Quick French keyboard is intended to be used in Keyman 3.2. Therefore,

add the following line to your program:

VERSION 3.2

The begin Statement

The begin statement tells Keyman which group to start processing with

when it receives a keystroke. Later on you will learn how to use multiple

groups to process keystrokes, but at present all you need to know is to include

this line in the header.

For the Quick French keyboard, add the following line to tell Keyman to start

in the Main group:

begin > use(Main)

Conclusion

Those five statements are the only ones required in the header. You can add

comments to the ends of the statements to help other people understand them.

Your Quick French keyboard should so far look like this:

c

c Simplified French Keyboard Program for Keyman 3.2

c

c This keyboard program uses a simplified set of keys

c for typing French, especially for those who don’t know the

c standard French keyboard.

c

c NOTE: This keyboard was created from the Keyman keyboard

c programming tutorial.

c

c Written by Anybody, 15 December 1994

c

NAME "Quick French"

BITMAPS FrKey1 FrKey0

HOTKEY "^%F"

VERSION 3.2

begin > use(Main)

The Rules

Before we start on the rules, we will define some terms:

Term Definition

rule A rule tells Keyman what output is

associated with a keystroke under

24 Tavultesoft Keyboard Manager

Term Definition

certain conditions; it is divided into

three parts: the context, key, and

output

context The context specifies the conditions

under which the rule is acted upon. It

is compared with the most recent

characters output.

key The key is the code for a single

keystroke that the rule acts on.

output The output is the part of the rule that

defines what characters are to be put

on the screen when the rule’s

conditions are met.

The Groups

The first thing to do is to define the group. There are two types of groups: one

that processes the key pressed and the context and another that does further

processing using only the context. For most purposes, the first type of group

will do all you need. The group of rules ends at the next group statement or

at the end of the file if there are no more group statements. We said in the

section about the header that the group to be processed first would be

identified by the begin statement.

The begin statement defined the first group as Main. In your program, add

a new line:

group(Main) using keys

using keys tells Keyman that the group processes keystrokes as well as

context. If you leave this out, the keystrokes will be ignored.

Simple Rules

The simplest rule you can have tells Keyman to convert one key into another.

A rule of this sort is represented in Keyman in the following way:

+ key > output

where key is the key to be translated, and output is the character to be

output. The plus sign (+), is optional, but shows you that the next character in

the string is the keystroke. More complex rules can have characters before the

plus sign (the context). The right angle-bracket (>) tells Keyman which part

of the rule is output and which part is the key and context. Single characters

can be represented in several different ways; the possible methods are listed

below:

Representation Example of the character “x”

Inside single quotes 'x'

Inside double quotes "x"

As a decimal number (base-10) d120

 Chapter 4 Writing a Simple Keyboard Program 25

As a hexadecimal number (base-16) x78

As an octal number (base-8) 170

These different ways of representing a single character follow the SIL-CC

conventions. The first three ways are the most often used, and octal

representation is rarely used. Multiple characters (a string) can be represented

in quotes simply by having more than one character in the string. You can

have any combination of these representations in a rule, with spaces between

them.

For example, to convert the key “a” to the character “z”, you would include

the following line in your keyboard program:

+ 'a' > 'z'

Or, to convert “?” to “Hello World!”, you would have this line:

+ "?" > "Hello World!"

You can use either single or double quotes.

A use of the decimal representation is, for example, in the British English

keyboard, where the hash sign (#) is converted into a pounds sign (£, decimal

code 163):

+ '#' > d163

Using the Context in More Complex Rules

Often you will want to know the previous characters that have been typed and

translate the keystrokes accordingly. Keyman remembers the characters that

came out on the screen, and not the actual keys typed. It is important to

remember this, because some programs such as SIL’s Keyswap (for DOS)

work with sequences of keys rather than characters. The characters that came

out on the screen are called the context. The context is represented in a rule to

the left of the keystroke, before the plus sign. For example,

"^" + "e" > "ê"

In this example, if you type a “^” (caret) followed by the letter “e”, it will

come out with the European letter “ê”. The caret is the context, the letter “e”

is the key, and the letter “ê” is the output.

You can add some of the rules to the Quick French keyboard program now.

Add the rules for all the “a”-related characters; you will quickly see how many

rules it would require for a complex keyboard. Another example rule for the

Quick French keyboard program is:

'`' + 'a' > 'à'

26 Tavultesoft Keyboard Manager

The Any, Index, and Store Statements

Keyman lets you translate a group of characters in one rule. It does this with

the any, index, and store statements. A store statement creates a set of

characters that can be operated on together under a name. The any statement

lets you match a character in a store and the index statement lets you output

a selected character from it.

A store statement comes between the begin statement and the first group.

It must all be on one line. (No endstore statement is required as in SIL-

CC; in fact, it is not supported.) The statement has the following syntax:

store(name) string

name is the name to give to the store. A store name can be up to 16 letters

long, but it is usually best to keep it short. The name can be any combination

of letters and numbers; spaces and punctuation characters are illegal. The

second part of the statement, string, is the string to put in the store; it can

use any combination of the character representations talked about in the

previous sections. An example:

store(lwrvowel) 'aeiou'

In this example, Keyman will create a store called “lwrvowel”, and make the

contents of the store equal to “aeiou”.

To use a store, you must have an any statement on the left hand side of a rule,

and, optionally, a corresponding index statement on the right hand side.

An any statement allows you to designate a set of characters instead of a

single character for the key or, as part of the context. The syntax of the

statement is:

any(storename)

For example, you could have the following:

store(stops) '!.?'

.

.

.

+ any(stops) > 'GO!'

This example would convert any of the characters “!”, “.”, and “?” to a “GO!”.

(This example is actually not very useful.)

But, to make the any statement useful, you really need to have a statement

that lets you know the matched character. The index statement lets you do

that.

The index statement lets you output a character in a store that is at the same

position as the matched character from the equivalent any statement’s store.

The index statement has the following syntax:

 Chapter 4 Writing a Simple Keyboard Program 27

index(storename,offset)

The storename is obvious; however, the offset part needs some

explaining. As Keyman allows you to have more than one any statement in a

single rule, the index statements in that rule need to know which any

statement they are to take their matched character information from. The

offset parameter tells Keyman the position of the character of the any

statement that is to be used, with the first character of the context having the

offset 1. For example,

+ any(lwrvowel) > index(uprvowel,1)

This rule would convert all lower case vowels to upper case. Or,

any(stops) + any(lwrvowel) > index(stops,1) index(uprvowel,2)

This one capitalizes any lower-case vowel following a full-stop, question, or

exclamation mark.

The context Statement

If the context of the rule is not modified in the output, then you can replace the

index statements on the RHS of the rule with a context statement. For

example, the previous rule becomes:

any(stops) + any(lwrvowel) > context index(uprvowel,2)

This is faster and, for more complex rules, easier to read. Use the context

statement wherever possible in preference to using index statements.

The Quick French example keyboard can make use of this quite easily; an

example will be shown for “^” and a vowel:

store(vowel) 'aeiouAEIOU'

store(caret) 'âêîôûÂÊÎÔÛ'

.

.

.

'^' + any(vowel) > index(caret,2)

You should be able to add all the rest of the rules fairly easily. At present,

leave out the “«”, “»”, and c-cedilla rules. For the “ý” and “Ý”, just add a

single rule (don’t use any and index). You can now delete the single rules

applying to “a”.

So far, your Quick French keyboard should look like this:

c

c Simplified French Keyboard Program for Keyman 3.2

c

c This keyboard program uses a simplified set of keys

c for typing French, especially for those who don’t know the

c standard French keyboard.

c

c NOTE: This keyboard was created from the Keyman keyboard

c programming tutorial.

28 Tavultesoft Keyboard Manager

c

c Written by Nobody, 15 December 1994

c

NAME "Quick French"

BITMAPS FrKey1 FrKey0

HOTKEY "^%F"

VERSION 3.2

begin > use(Main)

store(vowel) 'aeiouAEIOU'

store(caret) 'âêîôûÂÊÎÔÛ'

store(acute) 'áéíóúÁÉÍÓÚ'

store(grave) 'àèìòùÀÈÌÒÙ'

store(colon) 'äëïöüÄËÏÖÜ'

group(main) using keys

"'" + 'y' > 'ý'

"'" + 'Y' > 'Ý'

"^" + any(vowel) > index(caret,2)

"'" + any(vowel) > index(acute,2)

"`" + any(vowel) > index(grave,2)

'"' + any(vowel) > index(colon,2)

c End of file

Testing the Keyboard

Before you go any further, you should test your keyboard. Save your file, and

open the Keyman Options dialog box. Select Load, and choose your

keyboard. When you click Ok, the keyboard will load. If any errors occur,

refer to the section Fixing Load-Time Errors.

Load a text-editor or word-processor, such as Notepad, or WinWord. Select

the Quick French keyboard and try it out. Type sequences like ^a^e’a’e.

Once you are sure that that is all right, then try typing something like this: “A

problem in the keyboard.” You can see the problem: when you type

something in quotes, if the letter after the quote character is a vowel, it will be

converted.

Fixing the Problems

Open up your keyboard program again. The problem exists with two lines;

both of the lines regarding quotes will need to be changed. But first you have

to decide how you are going to represent the quote character when it is to be

used as a quote character. Probably the easiest way is just to type it twice.

The line you need to add is this; this will fix it for double quotes; add another

line to fix it for single quotes.

'""' + any(vowel) > '"' index(vowel, 3)

Another thing that would be nice is to make the diacritics as deadkeys. A

deadkey is a key that does not come out on the screen when it is pressed, but is

still remembered in the context. Many European keyboards use deadkeys.

 Chapter 4 Writing a Simple Keyboard Program 29

We will show you the line needed; you will need to remove the old rule to do

with carets and explain it for the caret (^) character:

+ '^' > deadkey(1)

deadkey(1) + any(vowel) > index(caret,2)

The deadkey, or dk statement accepts a number identifying it; it will not

appear on the screen, but it does stay in the context. You can have up to 254

different deadkeys, starting from 1.

You will want to add the deadkey rules for all the other characters; don’t

forget to use a different deadkey identifying number for each one. You will

also need to modify the quote modification statements talked about above, to

work with the deadkey better; it becomes simpler, as shown below:

dk(2) + '"' > '"'

You should add this sort of statement for all the diacritics, in case you wish to

use the original character.

There are some other characters we haven’t got support for yet: «, », ç, and Ç.

We decided to represent the “«” and “»” characters with double less-than and

double more-than symbols. You should be able to add rules for these, as well

as for the “ç” and “Ç” symbols.

But what if someone wanted to type “<<<<<<< *** >>>>>>>”, for instance,

as a divider to a section of a book. They wouldn’t want it to come out as

“«««< *** »»»>”. So we will make use of a deadkey to have it come out

correctly, as shown below:

"«" + "<" > "<<" dk(5)

"»" + ">" > ">>" dk(5)

dk(5) + "<" > "<" dk(5)

dk(5) + ">" > ">" dk(5)

You should be able to see what this does. Test your keyboard again; there

should not be any more problems. You have completed the Keyman keyboard

tutorial.

You can extend this keyboard to add support for every European character—

then you would call it EUROPE.KMN. The following chapter will explain

some of the more advanced features of the Keyman keyboard language; you

could use them to extend this keyboard.

 31

C H A P T E R 5

Further Programming

This chapter will build on what you have already learnt from chapter 4; it will

be assumed that you understand the basic Keyman keyboard program format.

The following subjects will be discussed in this chapter:

▪ Multiple groups

▪ Constraints

▪ Groups without the “using keys” keywords

▪ Virtual keys

▪ Other features

Multiple Groups

In chapter 4, you learnt how to create a file with one group. Multiple groups

can be useful for doing further processing such as changing characters in

certain contexts, or, as is done for some South-East Asian languages, syllable

splitting.

The use Statement

A group can be added with the group statement; the previous group ends at

the line before the statement. However, to use the group, you must have a way

of jumping from one group to another. The use statement lets you do this.

This statement is legal on the right hand side of a rule; you can put it anywhere

in the string, with one limitation: no index or context statements are

allowed after the use statement; using them will cause run-time errors.

Any output in a group will affect groups called by it, as well as groups after it.

The current context will be modified to add the changes made by a group,

before returning to the previous group, or jumping to another one.

The use statement has the following syntax:

use(groupname)

Where groupname is the name of the group to jump to. After the new group

has finished processing, control will return to the statement after the current

one, in the same rule. You can nest quite a few groups; the exact number is

not known.

32 Tavultesoft Keyboard Manager

The return Statement

The return statement stops all processing of rules and returns control to the

typist. No statements are executed after the return statement, even if it

jumps back through multiple groups.

The return statement has no parameters; it must be on the right hand side of

the rule.

The match and nomatch Rules

Two special rules can be included in a group: the nomatch rule and the

match rule. One of these two rules will be executed every time the group is

entered, unless the rule matched contains a return statement.

The rules are represented in the following way:

nomatch > right-hand-side

match > right-hand-side

Where the right-hand-side can include any of the statements legal to

the right hand side of a rule, except for context and index. Both of these

rules can jump to other groups with the use statement, output characters, or

stop processing with the return statement.

If no rule is matched, the nomatch rule will be executed; if a rule is matched,

the match rule will be executed, after the matched rule has been executed.

Summing Up

Several of the example keyboards included with this program illustrate the

usage of these statements and rules. To sum up:

LHS > RHS or use(group) or return

match > RHS or use(group) or return

nomatch > RHS or use(group) or return

Constraints

Constraints are ordinary rules that restrict certain combinations from being

typed. These rules can occur anywhere, even in a nomatch or match rule.

A constraint rule can just be something like the following line:

any(vowel) + any(vowel) > context

This would restrict two vowels from being typed in a row; the second key

would just be ignored.

However, you might wish to let the typist know that they typed an illegal

combination. This can be done with the beep statement. The beep

statement simply makes a beep at the PC speaker.

 Chapter 5 Further Programming 33

Note If you have a sound driver installed, such as the PC Speaker sound

driver, or a driver for a sound card, the beep statement plays the sound

identified by the Asterisk entry in the Sounds option in Control Panel.

The beep statement is legal only on the right hand side of a rule; it just tells

Keyman to make a beep, nothing else. A beep statement can be used both in

match and nomatch rules. Examples of the beep command:

any(vowel) + any(vowel) > context beep

+ any(illegal) > beep

When you are restricting a set of keys, without context, from being typed, but

you don’t want a beep, another statement is required. The nul statement tells

Keyman that nothing is on the right hand side of the rule. The rule above

would become:

+ any(illegal) > nul

This would simply ignore any illegal keys. In some situations with multiple

groups, this can be more useful than it appears. The nul statement is not

necessary for the nomatch and match rules; just don’t add them if you don’t

want them to do anything.

Typically, you would put constraints in the first group of a keyboard program,

and every rule matched would simply be a rule testing for illegal context and

key combinations. The nomatch rule would then be:

nomatch > use(maingroup)

Obviously, you could name the next group anything you like. The match

rule would probably be left out.

Groups Without the “using keys” Keyword

The using keys keyword, introduced in chapter 4, was used in a group

statement to tell Keyman that the group would be needing information on the

key pressed. In some situations, you might want ignore the keystrokes sent,

such as for syllable splitting, or for changing the order of stacked diacritics,

which only depends on the context.

Virtual Keys

With what you have learnt so far, any letter, number, or punctuation mark can

be identified as a key in a rule. However, you cannot test the Ctrl and Alt

states of these keys; with some keyboards, it is necessary to do so.

Virtual keys allow you to do that. A virtual key keyword can identify almost

any key on the keyboard; a few specialized ones are either reserved or unable

to be used.

34 Tavultesoft Keyboard Manager

Virtual keys are allowed only in the key section of a rule, not in the context or

the output. A virtual key is identified by an opening bracket character (‘[’). It

ends at a closing bracket character (‘]’). Inside the brackets, you can have a

combination of shift-key codes and the actual virtual key, which is identified

by a “K_” at the start of the keyword.

The keyboard shown further on gives the virtual keys for all keys on the

standard US 101 key keyboard. (Note: The arrangement may not be identical

to your keyboard.)

Important You must not use virtual keys in the output. Keyman will

recognize them, but output will be garbled. This version of Keyman does not

support virtual keys in the output.

` 1 2 3 4 5 6 7 8 9 0 - = Backspace

Tab Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

][

; '

, . / \

Enter
Caps Lock

Shift

Ctrl Alt

Shift

Alt Ctrl

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PrtScn Scroll Pause

Insert Home Pg Up

Delete End Pg Dn

  ➔



Num /  -

+

Enter

7 8 9

4 5 6

1 2 3

0 .

K_ESC K_F1 K_F2 K_F3 K_F4 K_F5 K_F6 K_F7 K_F8 K_F9 K_F10 K_F11 K_F12

K_TAB K_Q K_W K_E K_R K_T K_Y K_U K_I K_O K_P K_LBRKT K_RBRKT

K_A K_S K_D K_F K_G K_H K_J K_K K_L K_COLON K_QUOTE K_ENTER

K_0 K_HYPHEN K_BKSPK_BKQUOTE K_1 K_2 K_3 K_4 K_5 K_6 K_7 K_8 K_9 K_EQUAL

K_Z K_X K_C K_V K_B K_N K_M K_COMMA K_PERIOD K_SLASHSHIFT*

LCTRL* ALT*

SHIFT* K_BKSLASH

RALT* RCTRL*K_SPACE

K_PRTSCN K_SCROLL K_PAUSE

K_INS K_HOME K_PGUP

K_DEL K_END K_PGDN

K_NUMLOCK K_NPSLASH K_NPSTAR

K_NP7 K_NP8 K_NP9

K_NP4 K_NP5 K_NP6

K_NPMINUS

K_NPPLUS

K_UP K_NP1 K_NP2 K_NP3

K_LEFT K_DOWN K_RIGHT K_NP0

K_ENTER

K_NPDOT

K_KP5

†

CAPS*

Figure 5.1: The Virtual keys keyboard layout

* Keys marked by a star are special keys that will be discussed in more detail

further on.

† This key can be either K_KP5 when NUM LOCK is off, or K_NP5 when

NUM LOCK is on; this applies to all the keys on the number pad - when

NUM LOCK is off, the movement keys will be used.

 Chapter 5 Further Programming 35

For example, to test for the SCROLL LOCK key, you would have the following

line:

+ [K_SCROLL] > output

If you want to test for a key that is used with SHIFT, CTRL, ALT, or CAPS LOCK,

then you would proceed it with one of the following keywords:

Shift key to test Keyword

SHIFT SHIFT

Either CTRL CTRL

Left CTRL LCTRL

Right CTRL RCTRL

Either ALT ALT

Left ALT LALT

Right ALT RALT

CAPS LOCK on CAPS

CAPS LOCK off NCAPS

So, if you wanted to test for Right ALT + the letter “e”, you would have the

following line:

+ [RALT K_E] > output

This version of Keyman does not let you use stores for virtual keys.

Other Features

Other Header Statements

There are three optional header statements that Keyman recognizes, all

working with CAPS LOCK.

The first statement, CAPS ALWAYS OFF, makes sure that CAPS LOCK cannot

be turned on while the keyboard is active, and it turns CAPS LOCK off when the

keyboard is switched on. Put this statement on a single line in the header, as

follows:

CAPS ALWAYS OFF

The other two statements, CAPS ON ONLY, and SHIFT FREES CAPS are

usually used together. CAPS ON ONLY makes the CAPS LOCK key like a

typewriter CAPS LOCK, where pressing it turns it on only.

SHIFT FREES CAPS tells Keyman to recognize SHIFT and turns capitals

off. Using these two together makes Keyman work like many European

keyboards. These two statements each take a single line in the header, as

shown below:

SHIFT FREES CAPS

CAPS ON ONLY

36 Tavultesoft Keyboard Manager

nul In the Context

The nul statement is used at the start of the context to tell Keyman only to

match that rule if there are only as many characters output on the screen as in

the context. This statement is not very likely to be used; there is a possibility

you may use it for testing after a keyboard has been turned on, or to change a

character into the best possible output without knowing what is before it. For

example,

nul + 'a' > 'A' c Not very useful!

The outs Statement

The outs statement places the content of a store into the string at its position.

You would probably only use the outs statement for creating large stores.

Usage:

outs(storename)

Long Rules

When you are making your keyboard, you may find that some lines are very

long and are hard to read if made shorter. Keyman has a way of getting

around this: by putting a backslash (\) on the very end of the line, Keyman is

told that the line should be joined with the next one. You can do this for

multiple lines if necessary, up to 1K (about 1000 characters) long. The

backslash must come after comments if you have them. For example,

any(LowerCaseVowel) + any(UpperCaseVowel) > \

 index(UpperCaseVowel,1) c From previous line \

 index(LowerCaseVowel,2) c From previous line

Keyman and Control Panel’s International Settings

Keyman only interferes with one part of the International settings in Control

Panel, the keyboard layout. Keyman requires that you use the US keyboard

layout for it to work properly in most cases; you could create a keyboard for

other languages you wanted to use instead of using the default Windows one.

However, if you must use a different keyboard layout, Keyman 3.2 lets you

get around it when you use virtual keys. Virtual keys work properly with

other keyboard layouts, except that you may not be able to use right ALT or

CAPS LOCK with some keyboards.

 37

C H A P T E R 6

TIKE

TIKE is the keyboard program editor supplied with Keyman. It stands for

Tavultesoft Integrated Keyboard Editor. With TIKE, design and testing of

your keyboards is simplified because TIKE works closely with Keyman to

load your keyboards, report error messages, and test them. You can edit

multiple files and switch between them instantly, using the standard Windows

Multiple Document Interface.

This chapter will discuss the various parts of TIKE, and explain how to use

them.

Overview on Using TIKE

When you start TIKE, a startup dialog will briefly appear, as the TIKE

window is opened. After the startup dialog closes, you will see a screen that

looks like figure 6.1.

Figure 6.1: The TIKE screen (blank space has been removed)

You will notice that there is a status bar (at the bottom of the screen), a menu

bar, and a toolbar. If you have use Microsoft Word for Windows, these parts

of the screen will look familiar.

The Toolbar

The toolbar is accessible only with the mouse, but each button on the toolbar

is also available in the menu, although the menu will only show the options

applicable to the current situation. When you click and hold on a toolbar

button, the status bar will tell you what the button does.

The Status Bar

The status bar gives you information on the font, current position, menu items,

and toolbar buttons. When you are editing a file, the status bar will update

frequently with the current position and font.

38 Tavultesoft Keyboard Manager

The Menu

The menu bar will have different items and sub-menus at different times, to

hide items that are inappropriate for the situation.

Creating, Loading, Saving, and Editing Files

You can start a new file either by clicking on the new file button on the toolbar

(a white sheet of paper), or by selecting FileNew from the menus. A new

window will open, and you can type and edit in the same way as Notepad.

To open an existing file, either click on the opened folder button or select

FileOpen... from the menu. An Open dialog box will appear which works

the same way as the Open dialog box from Notepad (but looks a whole lot

nicer!)

To save the file you are editing, click the disk button, or select FileSave or

FileSave As.... These options also work in the same way as Notepad.

Selecting an Editing Font

TIKE lets you select an separate editing font for each file you are working on.

Click on the “ABC” toolbar button, or select OptionsFont.... The font

dialog box that appears is another standard one. Select the font, size, and style

you wish to use, and click Ok.

Searching and Replacing Text

The Search menu allows you to search for text, and replace it if you wish

with new text. The editing font you have selected will be used in the dialog

boxes; other than that, the dialog boxes are standard.

Testing Your Keyboard

Before you can test your keyboard, you must save it. When you click the

testing button (a keyboard with a “T”) on the toolbar, or select OptionsTest,
TIKE asks Keyman to load the keyboard into memory. If any errors occur,

TIKE moves to the appropriate line in the file and displays the error message

in the status bar. If the keyboard loads, a new window will open: the testing

window. The testing window simply lets you test the keyboard you loaded by

typing using that keyboard. TIKE will automatically switch keyboards when

you switch windows. You can select any font in the testing window the same

as in the editing windows.

When you have finished testing your keyboard, click the unload button (a

keyboard with an arrow), or select OptionsUnload Test Keyboard.

 Chapter 6 TIKE 39

Character Map

You will often want to use Character Map to find character codes in the fonts

you are working with; the last button on the toolbar loads Character Map, as

does the OptionsRun Character Map menu item.

Printing

TIKE lets you print your keyboards using the currently selected font; simply

click on the printer button, or select FilePrint.... You can set the margins,

header and footer using the Page Setup dialog box. By default, the paper will

have one inch margins and the name of the keyboard will printed at the top of

each page. The header and footer will print with the selected font in bold and

italic.

Reference

A summary of the menu options, associated toolbar buttons, and what they do

is provided below:

 FileNew Create a new file

 FileOpen... Open an existing file

 FileSave Save the current file

 FileSave As... Save the current file to a new name

 FilePrint... Print the current file

 FilePage Setup... Set margins, header and footer for printing

 FileExit Exit TIKE

 EditUndo Undo the previous action

 EditCut Move selected text to clipboard

 EditCopy Copy selected text to clipboard

 EditPaste Insert clipboard contents at the insertion

point

 SearchFind... Find specified text

 SearchReplace... Find specified text and replace with new text

 OptionsFont... Change the editing font for the current file

 OptionsRun
Character Map

Load the Character Map accessory

 OptionsTest Test the current keyboard file

 OptionsUnload
Test Keyboard

Unload the current keyboard being tested

 WindowTile Tile the open windows

 WindowCascade Arrange the windows in cascading format

 HelpAbout Provide information on the TIKE version

 41

A P P E N D I X 1

The KEYMAN.INI File

Keyman stores all its options in KEYMAN.INI, in the Windows directory.

The KEYMAN.INI file is a standard Windows INI file, divided into sections

with options in each section.

There can be four sections in KEYMAN.INI: [Options], [Advanced],

[Extensions], and [TIKE]. The [Options] section contains options

about the position of the keyboard buttons, hotkeys, and similar settings. The

[Advanced] section contains settings about rules and the sizes of buffers

used with the rules. The [Extensions] section has the names of the

Extension handlers (documented fully in Technical Documentation) installed

in Keyman. [TIKE] contains settings about TIKE.

The [Options] Section

The [Options] section has the following settings:

Setting Default Description

DisableHotKey Ctrl+Shift+K_W Turns all keyboards off

SwitchHotKey Alt+K_EQUAL Toggles the keyboard state

MenuHotKey Ctrl+Alt+K_EQUAL Brings up the Keyman menu

IconWindow Off Whether the Keyman floating

button window is on or off

IconPosition Left The position of the Keyman

buttons on the title bar

IconWindowPos TitleBar The position of the Keyman

floating button window, if on

IconWindowGrab Off True/On if the Grab-Tag

Mover option is set

IconWindowLocation The position of the icon

window on the screen, in

pixels

FloatingCompatMode Off Use Windows-NT

compatibility mode

42 Tavultesoft Keyboard Manager

The [Advanced] Section

The [Advanced] section controls the size of Keyman’s internal rule buffers.

It has the following settings:

Setting Default Description

MsgStackSize 80 The maximum number of messages that

Keyman can output in a single rule; keep in

mind that one backspace takes two messages,

and several messages are required for internal

use.

KeyContextSize 16 The maximum length of the context in a rule,

in bytes.

KeyOutputSize 16 The maximum length of the output in a rule, in

bytes.

MaxKeyboards 8 The maximum number of keyboards that can

be in memory at once.

ContextStackSize 64 The length of the output that Keyman will

remember; when it gets longer than this,

Keyman shifts the first characters off the left.

You should never need to change this.

MaxKeyCombos 1024 The maximum number of rules in a group.

The default maximum can be increased if you

reduce KeyContextSize or KeyOutputSize; the

maximum number of rules in a group can be

calculated with this formula:

MaxKeyCombos =

 65535/(KeyContextSize+KeyOutputSize+5)

If you change the KeyOutputSize and

KeyContextSize and thereby exceed this

maximum, Keyman will display a warning and

tell you the appropriate value for

MaxKeyCombos.

Each rule with an any statement in the key

will be expanded to multiple rules when

loaded - one rule for each character in the

store.

The [Extensions] Section

The [Extensions] section consists of lines that each add a Keyman File

Extension Handler to Keyman. A Keyman File Extension Handler is a library

that loads a file into Keyman format in memory. The default Extension

Handler supplied with Keyman loads “KMN” files. Other Extension Handlers

would load other formats of files, for example, a compiled “KMN” file.

 Appendix 1 The KEYMAN.INI File 43

Each line looks like this:

ext=filename.dll,description

Where ext is the three character extension of the file names that the

Extension Handler will process; filename.dll is the name of the library

that contains the Extension Handler, and description is a description of

the files it handles that appears in the Load dialog box. The default Extension

Handler is added to this list internally; it does not need to be in the INI file;

however, as an example, a line for it would look like this:

KMN=KMDFILE.DLL,Keyman Files (*.kmn)

The [TIKE] Section

The [TIKE] section contains settings about the position of the TIKE window.

You do not need to change any of the settings, which are shown below:

Setting Description

WindowPos The position of the restored TIKE window on the screen

PointPos The positions of the icon, and the top left corner of the

maximized window

ShowCmd The mode to show the window in.

 45

A P P E N D I X 2

Some Keyboard Templates

Some blank keyboard templates are provided on the following pages which

you can photocopy, fill in, and provide with your keyboards. These templates

are also included with Keyman in the file KBDS.DOC, in Word for Windows

2.0 format. You can copy this document and add your own characters to the

document.

~

`

!

1

@

2

#

3

$

4

%

5

^

6

&

7

*

8

(

9

)

0

_

-

+

=
Backspace

Tab
Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

}

]

{

[

:

;

"

'

<

,

>

.

?

/

|

\

EnterCaps Lock

Shift

Ctrl Alt

Shift

Alt Ctrl

46 Tavultesoft Keyboard Manager

~

`

!

1

@

2

#

3

$

4

%

5

^

6

&

7

*

8

(

9

)

0

_

-

+

=
Backspace

Tab
Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

}

]

{

[

:

;

"

'

<

,

>

.

?

/

|

\

EnterCaps Lock

Shift

Ctrl Alt

Shift

Alt Ctrl

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

PrtScn
Scroll

Lock
Pause

Insert Home Pg Up

Delete End Pg Dn

  ➔



Num

Lock
/  -

+

Enter

7 8 9

4 5 6

1 2 3

0 .

 Appendix 2 Some Keyboard Templates 47

 49

I N D E X

—[—

[Advanced], 42

[Extensions], 42

[Options], 41

[TIKE], 43

—A—

About button, 9

ANSI text format, 20

Any statement, 26

ASCII text format, 20

—B—

beep statement, 32

begin Statement, 23

BITMAPS Statement, 22

Blank Lines, 21

—C—

CAPS ALWAYS OFF, 35

caps lock, 35

CAPS ON ONLY, 35

CC tables, 19

Character Map, 19, 39

Comments, 21

Constraints, 32

context, 25

defined, 24

context statement, 27

Control Panel, 36

—D—

descriptive name, 22

—E—

endstore, 26

English

typing in, 8

Exit button, 10

—F—

Floating window, 12

—G—

Groups, 24

multiple, 31

—H—

Hardware requirements, 5

Header, the, 21

Help button, 10

Hide button, 9

hotkey

keyboard on, 22

HOTKEY Statement, 22

Hotkeys

Changing, 13

—I—

Index statement, 26

International dialog in Control Panel, 36

—K—

key

defined, 24

keyboard button, 22

keyboard buttons, 7, 11

anywhere on the screen, 12

in floating window, 12

locking in place, 13

On title bar, 11

Keyboard Hotkeys, 14

keyboard program, 19

Keyboards

Loading, 10

testing, 28, 38

Unloading, 10

Keyman Menu, 9

Keyman startup list, 15

Keyman Window, 9

KEYMAN.INI, 41

—L—

Languages

Typing in other, 7

Load button, 10

Loading Keyboards, 10

Long Rules, 36

—M—

Macros, 16

match Rule, 32

multi-line rules, 36

Multiple Groups, 31

—N—

NAME Statement, 22

nomatch Rule, 32

50 Tavultesoft Keyboard Manager

nul statement, 33

in the context, 36

—O—

Options button, 10

Options Dialog Box, 10

output

defined, 24

outs Statement, 36

—P—

Paintbrush, 22

—R—

Representation of characters, 25

Requirements, hardware and system, 5

return Statement, 32

Right Aligned radio button, 11

rule

defined, 24

—S—

Set Hotkeys dialog box, 13

Setup program, 5

SETUP.EXE, 5

SHIFT FREES CAPS, 35

Starting Keyman, 6

Starting Keyman Automatically, 15

Store statement, 26

—T—

Testing the Keyboard, 28

text editor, 20

TIKE, 37

Creating, Loading, Saving, and Editing Files, 38

Editing Font, 38

Menu, 38

Printing, 39

Searching and Replacing Text, 38

Status Bar, 37

Toolbar, 37

Title bar

Location of keyboard buttons, 11

Typing

in English, 8

In other languages, 7

—U—

Unload button, 10

Unloading Keyboards, 10

use Statement, 31

using keys, 24, 33

—V—

version 3.2, 23

VERSION Statement, 23

Virtual Keys, 33

