
Reference

This language reference describes the keyboard programming language of

Tavultesoft Keyboard Manager.

The layout of a keyboard file is organized in two distinct parts: the header, and

the body of the code.

Header

The header consists of statements that provide information about the

keyboard: the name, version of Keyman it was created for, hotkeys, and title

bar icons. The header must come at the start of the file. The statements

should be entered uppercase so as to distinguish them from statements in the

main body of the code; however, Keyman will recognize them anyway.

Body

The body of the keyboard can contain stores and groups of rules.

Stores are used to keep a table of keys which can be referenced to a second

table of output characters. Rules are the heart of a keyboard file. They

describe the action Keyman should take when processing a key combination.

They can be dependent on the context of characters before them and produce

any characters that you wish.

Stores are described in more detail under the store statement.

Each rule consists of three parts: the context, keystroke, and output. Either the

context or the keystroke are optional in some situations. The context is what

is compared to characters already on the screen. The keystroke is compared to

the key you type, and the output is what will replace and supplement the

context on the screen.

Keyman has a buffer for the screen characters of 64 bytes. The length of the

context and the output is by default 16 bytes for each. These limits can be set

in the [Advanced] section of KEYMAN.INI. See the Keyman User’s Manual

for more information on KEYMAN.INI.

Rules can have an optional context. The base context is the characters that

were output to the screen after Keyman translated them. The base context is

usually 64 characters long and the rule context is usually 16 characters long,

although both are modifiable. You can compare the rule context to the base

context; if it matches (and the key too), that rule will be used in the output of

the new string. The context, output and keystroke are specified in

ExtendedString format.

The three parts of a rule (context, key, and output) are put together in a style

similar to SIL CC:

Context + Key > Output

The '+' is an optional character; it is just supplied to make it easier to see the

break between context and key. Note: The plus character ('+') may be

required in later versions of Keyman. The simplest type of rule is simply

one-to-one key mapping. The most complex can have a table of keys which

can be referenced in many different ways to match the context.

Variable Types

The different types of variables/constants and the prefixes usually used when

describing them are:

TextString (ts...) A string of text enclosed by double quotes

StoreName (sn...) The name of a store in that file (no quotes)

Number (n) A number such as an offset

ExtendedString (xs) A string that can have "", '', d..., x...,

Identifier (i) A string not enclosed by quotes; file names.

ExtendedString/Char format

The ExtendedString and ExtendedChar formats are strings/characters that can

be written as a quoted string and/or decimal/hexadecimal/octal codes. An

extended string can be made up of any amount of these different codes. There

are five ways of representing any character in the string; these are shown in

the table below:

Code Description Example

'A' In single quotes (you can represent a double quote

character (") inside single quotes)

+ 'C' > 'X'

"A" In double quotes (you can represent a single quote

character (') inside double quotes)

+ "'" > '"'

d65 As a decimal (useful for upper-ascii numbers and

codes like optional hyphen (d31).

+ d66 > d74

x41 As a hexadecimal (base 16) code (mostly useful

for people used to programming with hexadecimal

numbers)

+ x50 > x88

101 As an octal (base 8) code (to provide compatibility

with SIL-CC)

+ 124 > 204

The extended string format can also include statements such as any and index

that will be converted and/or expanded to the correct sequences in memory

when the keyboard is loaded.

Comments

A comment can be inserted in a line by preceding it with a 'c' identifier. The

identifier must be preceded and followed with a space character. The

comment continues until the end of the line.

Statements Reference

any statement

any(snStore)

The any statement will, in effect, return true if the character input is in the

store snStore. The character input is implied. This statement is only valid

on the left side of a rule; the index statement is used to output the results of

an any in the output. If an any is used in the key, it will be expanded out to

include one rule for each character in the store. The any statement

remembers the offset in the store where the match for later use with the

index statement.

snStore: The name of the store to check in

+ any(keys) > index(output,1)

beep statement

beep

The beep statement produces a beep at the system speaker when the rule is

matched. If you have a sound driver installed, beep will produce the sound

specified by “Asterisk” in the Sounds option in Control Panel. When using

the beep statement, remember that it can delete all that was matched on the

left side of the rule if you don't precede it with context or appropriate

characters. The beep statement is only valid in the output. The example

given below will, if it receives a key that is in the key group, and the context

ends with a cons character, ignore the key and leave the context alone.

no parameters

any(cons) + any(key) > context beep

begin header statement

begin > use(gnGroup)

The begin statement tells Keyman which group should be used first when it

receives a keystroke. This line originated in SIL-CC, and a simplified version

was used in Keyman for consistency.

gnGroup: The name of the group to use first.

begin > use(main)

BITMAPS header statement

BITMAPS iKeyonBmp[,] iKeyoffBmp

BITMAPS specifies the on and off state bitmaps that will appear in the title bar

or floating window when that keyboard is loaded. You can place an optional

comma between the two arguments to the statement. The BITMAPS statement

replaces the CONTROL statement from version 2.x of Keyman.

iKeyonBmp: The bitmap file for the on state of the keyboard icon.

iKeyoffBmp: The bitmap file for the off state of the keyboard icon.

BITMAPS AKeyOn, AKeyOff

context statement

context

The context statement simply reproduces the context stored from the rule

match into the output. Use the context statement as much as possible as it

is significantly faster than using the index statement.

no parameters

any(cons) "W" + any(key) > context index(keyout,3)

deadkey statement

deadkey(nKey)

The deadkey statement lets you program a deadkey in your keyboard. The

deadkey will be the same as a normal character, but it won't come up on the

screen. You can have up to 254 deadkeys, from 1 to 255.

nKey: A number from 1 to 255 that identifies the deadkey

+ '`' > deadkey(1)

deadkey(1) + 'e' > 'è'

group statement

group(gnGroup) [using keys]

group tells Keyman that a new group has started. There are two sorts of

groups: key processing groups, and context processing groups. Key

processing groups can include context checking, but context processing groups

cannot include key checking. Keyman will use first the group specified in the

begin statement, and move from there onto other groups. The keystroke

received by Keyman is the same for all groups with key processing.

To tell Keyman that the group should include key processing, you should

include the using keys section of the statement; it that is left out, Keyman

assumes the group checks the context only. The keystroke will remain the

same during processing; you can have many groups that each use

using keys, and the keystroke will be the same for all of them. If you

leave out the using keys bit, you have to also leave out the '+' and the

keystroke, because if you leave them in, the keystroke will be regarded as part

of the context.

gnGroup: The name of the new group.

group(main) using keys

group(syllablecheck)

HOTKEY header statement

HOTKEY tsHotKey

The HOTKEY statement specifies the hotkey that Keyman will use to turn the

keyboard on. When this hotkey is pressed, any active keyboard will be turned

off and the new keyboard will be turned on.

The hotkey can be any letter key, with any of the Shift,Control and/or Alt keys

also held down. The specification of the HOTKEY statement follows the

Microsoft standard for hotkeys in Windows. Inside a double-quoted string,

you can combine the letter key with special characters to identify the shift

state:

To Combine With Precede the letter-key

by:

Shift + (plus sign)

Ctrl ^ (caret sign)

Alt % (percent sign)

Starting with version 3.1, the hotkey can also be in Virtual Key format, so that

you can use any key on the keyboard.

tsHotKey: The hotkey string; specified in the following format:

HOTKEY "^+A" c Ctrl+Shift+A

HOTKEY [Alt Shift K_PAUSE] c Alt+Shift+Pause

index statement

index(snStore,nOffset)

The index statement gets the offset of the character from the left side of the

rule at offset nOffset. The offset refers to the position, including other

characters, to the any statement which has saved the offset which it found the

character in. The index will output the character at that offset from the store

snStore. If used carefully, the index and any combination can be very

powerful. The index statement is only valid in the output.

snStore: The store to output from

nOffset: The offset in the input to retrieve the any information from.

any(cons) "W" + any(key) > index(keyout,3) "w" index(cons,1)

match rule

match > esString

In each group, if Keyman finds a match rule, it will use it when a rule in the

group was matched. A match rule can include use, return, beep and

normal characters.

esString: The extended string to output, including the statements

mentioned above.

match > use(AdjustVowels)

NAME header statement

NAME tsKeyboardName

The NAME statement lets you give a longer name to your keyboard than just

the eight letter DOS file name limit. If NAME isn't specified in the keyboard

file, Keyman will use the filename of the keyboard, excluding the extension,

so the NAME statement is optional.

tsKeyboardName: The name to give the keyboard file limited to 80

characters.

NAME "Vietnamese"

nomatch rule

nomatch > esString

nomatch is similar to match, but instead of the rule being used when a rule

was matched, it will be used when a rule isn't matched in the group. A

nomatch rule can include use, return, beep and normal characters.

esString: The extended string to output, including the statements

mentioned above.

nomatch > beep

nul statement

nul

The nul statement will delete the context and key on the left hand side of the

rule from the output; it is equivalent to having an empty output (which is not

allowed). The nul statement probably will not be used often, because there

are not many times you would want to delete the context and keystroke. The

nul command must be the only character or command on the right hand side

of the rule

no parameters

any(cons) + any(key) > nul c delete consonant and next key

outs statement

outs(snStore)

The outs statement simply copies the store snStore into the position in

which it has been inserted. Most of the time this is used only in stores but it

can be used in the context and output as well.

snStore: The store to expand

store(key) "ABC" outs(DEFstore)

return statement

return will tell Keyman to stop processing rules and wait for the next

keystroke to come. Keyman will not return to process other groups that called

the one with the return statement.

no parameters

nomatch > return

store command

store(snStore) xsData

The store statement lets you store a string of characters or keys in a buffer

which can then be referenced with any and index. Proper use of store

can reduce many keyboards down to a few rules. A store is terminated at the

end of the line (or continuation lines).

snStore: The name of the store to use

xsData: The data to place into the store snStore

store(keys) "ABCDEFG"

use command

use(gnGroup)

The use statement tells Keyman to switch processing to a new group; after

Keyman has gone through the new group, and any other nested groups, it will

return to the previous one. The use statement can be used with the match

and nomatch rules; it will work the same way.

gnGroup: The name of the group to switch control to.

use(AdjustVowels)

VERSION header statement

VERSION nKeyboardVersion

The VERSION statement has been added to Keyman 3.0 to allow later

versions to easily distinguish what version of Keyman the keyboard was

written for and handle it as such. Earlier versions of keyboards will not have

this statement. The VERSION statement is required.

nKeyboardVersion: The version of KEYMAN the keyboard was

written for; for this version specify 3.0.

VERSION 3.0

